[torchbench][optimus] Add backend optimus (#167357)

Summary: `--optimus [all | vertical_opt | horizontal_opt]` will kick off inductor compile with different fusion strategies.

Test Plan:
TorchBench Runner:

```
$ buck2 run mode/opt //pytorch/benchmark:run -- customized_optimus_illustrative -t train -d cuda
GPU Time per batch:   56.254 milliseconds
CPU Wall Time per batch:  56.326 milliseconds
CPU Wall Time:        56.326 milliseconds
Time to first batch:          420.0777 ms
GPU 0 Peak Memory:              0.0695 GB
CPU Peak Memory:              359.6362 GB
```

PT2 Benchmark Runner (comparing with eager):

```
buck2 run mode/opt //pytorch/benchmark:pt2 -- --only customized_optimus_illustrative  --performance --training --inductor

running benchmark: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [00:02<00:00, 14.37it/s]
4.509x
```

eager latency: ~56 ms
inductor latency: ~11 ms

Optimus backend:

```
$ buck2 run mode/opt //pytorch/benchmark:pt2 -- --only customized_optimus_illustrative --performance --training --optimus all
11.02923508733511 ms, 13.884015614166856 ms, 0.794x
```

```
$ buck2 run mode/opt //pytorch/benchmark:pt2 -- --only customized_optimus_illustrative --performance --training --optimus vertical_opt
12.47156853787601 ms, 10.699485195800662 ms, 1.166x
```

```
$ buck2 run mode/opt //pytorch/benchmark:pt2 -- --only customized_optimus_illustrative --performance --training --optimus horizontal_opt
11.078484123572707 ms, 10.797873372212052 ms, 1.026x
```

optimus latency ~10 ms

Differential Revision: D86524903

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167357
Approved by: https://github.com/mengluy0125
This commit is contained in:
Xu Zhao
2025-11-11 00:35:27 +00:00
committed by PyTorch MergeBot
parent f6331192b4
commit 8d5cceeb6a
2 changed files with 96 additions and 5 deletions

View File

@@ -952,7 +952,7 @@ def latency_experiment_summary(suite_name, args, model, timings, **kwargs):
first_fields.append(kwargs["tag"])
headers = first_headers + ["speedup", "abs_latency"]
row = first_fields + [float(speedup), median[1] * 1000]
msg = f"{speedup:.3f}x"
msg = f"{median[0] * 1000} ms, {median[1] * 1000} ms, {speedup:.3f}x"
if args.baseline:
headers.extend(
[
@@ -1010,7 +1010,7 @@ def latency_experiment_summary(suite_name, args, model, timings, **kwargs):
# Hypothetically you can use this from other places, but it's currently
# inaccessible, and when this assert fails you need to update the
# event_name here to account for the other cases you are using this
assert args.quantization is not None
assert any([args.quantization, args.optimus])
output_signpost(
dict(zip(headers, row)),
args,
@@ -2587,6 +2587,9 @@ class BenchmarkRunner:
**experiment_kwargs,
)
# reset dynamo
torch._dynamo.reset()
if self.args.export_aot_inductor:
optimized_model_iter_fn = optimize_ctx
else:
@@ -2950,7 +2953,7 @@ class BenchmarkRunner:
status = self.check_tolerance(name, model, example_inputs, optimize_ctx)
print(status)
elif self.args.performance:
if self.args.backend == "torchao":
if self.args.backend in ["torchao", "optimus"]:
status = self.run_performance_test_non_alternate(
name, model, example_inputs, optimize_ctx, experiment, tag
)
@@ -3526,6 +3529,12 @@ def parse_args(args=None):
action="store_true",
help="Measure speedup with TorchInductor",
)
group.add_argument(
"--optimus",
choices=["vertical_opt", "horizontal_opt", "all"],
default=None,
help="Measure speedup of Optimus with TorchInductor baseline",
)
group.add_argument(
"--quantization",
choices=[
@@ -3783,6 +3792,9 @@ def run(runner, args, original_dir=None):
if args.inductor:
assert args.backend is None
args.backend = "inductor"
if args.optimus:
assert args.backend is None
args.backend = "optimus"
if args.quantization:
assert args.backend is None
args.backend = "torchao"
@@ -4067,10 +4079,22 @@ def run(runner, args, original_dir=None):
runner.model_iter_fn = model_iter_fn_and_mark_step
optimize_ctx = torchao_optimize_ctx(args.quantization)
elif args.backend == "optimus":
from .optimus import get_baseline_ctx, get_optimus_optimize_ctx
baseline_ctx = get_baseline_ctx(
nopython=args.nopython, inductor_compile_mode=args.inductor_compile_mode
)
runner.model_iter_fn = baseline_ctx(runner.model_iter_fn)
optimize_ctx = get_optimus_optimize_ctx(
args.optimus, args.nopython, args.inductor_compile_mode
)
else:
optimize_ctx = torch._dynamo.optimize(args.backend, nopython=args.nopython)
experiment = (
speedup_experiment if args.backend != "torchao" else latency_experiment
speedup_experiment
if args.backend not in ["torchao", "optimus"]
else latency_experiment
)
if args.accuracy:
output_filename = f"accuracy_{args.backend}.csv"
@@ -4091,7 +4115,12 @@ def run(runner, args, original_dir=None):
if args.only in runner.disable_cudagraph_models:
args.disable_cudagraphs = True
if args.inductor or args.backend == "inductor" or args.export_aot_inductor:
if (
args.inductor
or args.backend == "inductor"
or args.export_aot_inductor
or args.backend == "optimus"
):
inductor_config.triton.cudagraphs = not args.disable_cudagraphs
inductor_config.triton.persistent_reductions = (
not args.disable_persistent_reductions

View File

@@ -0,0 +1,62 @@
import functools
import torch
def get_baseline_ctx(nopython, inductor_compile_mode):
return functools.partial(
torch.compile,
backend="inductor",
fullgraph=nopython,
mode=inductor_compile_mode,
)
def get_optimus_optimize_ctx(config, nopython, inductor_compile_mode):
if config == "vertical_opt":
optimus_inductor_config = {
"pre_grad_fusion_options": {
"normalization_pass": {},
"merge_splits_pass": {},
"split_cat_pass": {},
"unbind_stack_pass": {},
"unbind_cat_to_view_pass": {},
}
}
elif config == "horizontal_opt":
optimus_inductor_config = {
"pre_grad_fusion_options": {
"normalization_pass": {},
"batch_linear": {},
"batch_layernorm": {},
},
}
elif config == "all":
optimus_inductor_config = {
"pre_grad_fusion_options": {
"normalization_pass": {},
"batch_linear": {},
"batch_layernorm": {},
"merge_splits_pass": {},
"split_cat_pass": {},
"unbind_stack_pass": {},
"unbind_cat_to_view_pass": {},
},
}
else:
raise RuntimeError(f"Unknown optimus config: {config}")
def _inner(fn):
if "pre_grad_fusion_options" in optimus_inductor_config:
torch._inductor.config.pre_grad_fusion_options = optimus_inductor_config[
"pre_grad_fusion_options"
]
if "post_grad_fusion_options" in optimus_inductor_config:
torch._inductor.config.post_grad_fusion_options = optimus_inductor_config[
"post_grad_fusion_options"
]
return torch.compile(
fn, backend="inductor", fullgraph=nopython, mode=inductor_compile_mode
)
return _inner