update get start xpu with new client gpu & update format (#169810)

- update get start xpu with new client gpu
- update script format
Pull Request resolved: https://github.com/pytorch/pytorch/pull/169810
Approved by: https://github.com/EikanWang, https://github.com/gujinghui

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
This commit is contained in:
Zheng, Zhaoqiong
2025-12-16 04:37:54 +00:00
committed by PyTorch MergeBot
parent 53b15594e0
commit 5be28ea833

View File

@@ -21,22 +21,24 @@ For Intel Data Center GPU
For Intel Client GPU
+-------------------------------------+----------------------------------------------------------------------------------------------------+
| Supported OS | Validated Hardware |
+=====================================+====================================================================================================+
|| Windows 11 & Ubuntu 24.04/25.04 || Intel® Arc A-Series Graphics (CodeName: Alchemist) |
|| || Intel® Arc B-Series Graphics (CodeName: Battlemage) |
|| || Intel® Core™ Ultra Processors with Intel® Arc™ Graphics (CodeName: Meteor Lake-H) |
|| || Intel® Core™ Ultra Desktop Processors (Series 2) with Intel® Arc™ Graphics (CodeName: Lunar Lake) |
|| || Intel® Core™ Ultra Mobile Processors (Series 2) with Intel® Arc™ Graphics (CodeName: Arrow Lake-H)|
+-------------------------------------+----------------------------------------------------------------------------------------------------+
+---------------------------------------+-----------------------------------------------------------------------------------------------------+
| Supported OS | Validated Hardware |
+=======================================+=====================================================================================================+
| Windows 11 & Ubuntu 24.04/25.04 | Intel® Arc A-Series Graphics (CodeName: Alchemist) |
| | Intel® Arc B-Series Graphics (CodeName: Battlemage) |
| | Intel® Core™ Ultra Processors with Intel® Arc™ Graphics (CodeName: Meteor Lake-H) |
| | Intel® Core™ Ultra Processors (Series 2) with Intel® Arc™ Graphics (CodeName: Arrow Lake-H) |
| | Intel® Core™ Ultra Mobile Processors (Series 2) with Intel® Arc™ Graphics (CodeName: Lunar Lake) |
+---------------------------------------+-----------------------------------------------------------------------------------------------------+
| Windows 11 & Ubuntu 25.10 | Intel® Core™ Ultra Mobile Processors (Series 3) with Intel® Arc™ Graphics (CodeName: Panther Lake) |
+---------------------------------------+-----------------------------------------------------------------------------------------------------+
Intel GPUs support (Prototype) is ready from PyTorch* 2.5 for Intel® Client GPUs and Intel® Data Center GPU Max Series on both Linux and Windows, which brings Intel GPUs and the SYCL* software stack into the official PyTorch stack with consistent user experience to embrace more AI application scenarios.
Software Prerequisite
---------------------
To use PyTorch on Intel GPUs, you need to install the Intel GPUs driver first. For installation guide, visit `Intel GPUs Driver Installation <https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu.html#driver-installation>`_.
To use PyTorch on Intel GPUs, you need to install the Intel GPUs driver first. For installation guide, visit `Intel GPUs Driver Installation <https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu.html>`_.
Please skip the Intel® Deep Learning Essentials installation section if you install from binaries. For building from source, please refer to `PyTorch Installation Prerequisites for Intel GPUs <https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu.html>`_ for both Intel GPU Driver and Intel® Deep Learning Essentials Installation.
@@ -47,17 +49,17 @@ Installation
Binaries
^^^^^^^^
Now that we have `Intel GPU Driver <https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu.html#driver-installation>`_ installed, use the following commands to install ``pytorch``, ``torchvision``, ``torchaudio``.
Now that we have `Intel GPU Driver <https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu.html>`_ installed, use the following commands to install ``pytorch``, ``torchvision``, ``torchaudio``.
For release wheels
.. code-block::
.. code-block:: bash
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/xpu
For nightly wheels
.. code-block::
.. code-block:: bash
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu
@@ -79,7 +81,7 @@ Check availability for Intel GPU
To check if your Intel GPU is available, you would typically use the following code:
.. code-block::
.. code-block:: python
import torch
print(torch.xpu.is_available()) # torch.xpu is the API for Intel GPU support
@@ -91,7 +93,7 @@ Minimum Code Change
If you are migrating code from ``cuda``, you would change references from ``cuda`` to ``xpu``. For example:
.. code-block::
.. code-block:: python
# CUDA CODE
tensor = torch.tensor([1.0, 2.0]).to("cuda")
@@ -113,88 +115,88 @@ This section contains usage examples for both inference and training workflows.
Inference Examples
^^^^^^^^^^^^^^^^^^
Here is a few inference workflow examples.
Here are a few inference workflow examples.
Inference with FP32
"""""""""""""""""""
.. code-block::
.. code-block:: python
import torch
import torchvision.models as models
import torch
import torchvision.models as models
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
model = model.to("xpu")
data = data.to("xpu")
model = model.to("xpu")
data = data.to("xpu")
with torch.no_grad():
model(data)
with torch.no_grad():
model(data)
print("Execution finished")
print("Execution finished")
Inference with AMP
""""""""""""""""""
.. code-block::
.. code-block:: python
import torch
import torchvision.models as models
import torch
import torchvision.models as models
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
model = model.to("xpu")
data = data.to("xpu")
model = model.to("xpu")
data = data.to("xpu")
with torch.no_grad():
d = torch.rand(1, 3, 224, 224)
d = d.to("xpu")
# set dtype=torch.bfloat16 for BF16
with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=True):
model(data)
with torch.no_grad():
d = torch.rand(1, 3, 224, 224)
d = d.to("xpu")
# set dtype=torch.bfloat16 for BF16
with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=True):
model(data)
print("Execution finished")
print("Execution finished")
Inference with ``torch.compile``
""""""""""""""""""""""""""""""""
.. code-block::
.. code-block:: python
import torch
import torchvision.models as models
import time
import torch
import torchvision.models as models
import time
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
ITERS = 10
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
ITERS = 10
model = model.to("xpu")
data = data.to("xpu")
model = model.to("xpu")
data = data.to("xpu")
for i in range(ITERS):
start = time.time()
with torch.no_grad():
model(data)
torch.xpu.synchronize()
end = time.time()
print(f"Inference time before torch.compile for iteration {i}: {(end-start)*1000} ms")
for i in range(ITERS):
start = time.time()
with torch.no_grad():
model(data)
torch.xpu.synchronize()
end = time.time()
print(f"Inference time before torch.compile for iteration {i}: {(end-start)*1000} ms")
model = torch.compile(model)
for i in range(ITERS):
start = time.time()
with torch.no_grad():
model(data)
torch.xpu.synchronize()
end = time.time()
print(f"Inference time after torch.compile for iteration {i}: {(end-start)*1000} ms")
model = torch.compile(model)
for i in range(ITERS):
start = time.time()
with torch.no_grad():
model(data)
torch.xpu.synchronize()
end = time.time()
print(f"Inference time after torch.compile for iteration {i}: {(end-start)*1000} ms")
print("Execution finished")
print("Execution finished")
Training Examples
^^^^^^^^^^^^^^^^^
@@ -204,181 +206,182 @@ Here is a few training workflow examples.
Train with FP32
"""""""""""""""
.. code-block::
.. code-block:: python
import torch
import torchvision
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
print(f"Initiating training")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 10 == 0:
print(f"Initiating training")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")
print("Execution finished")
Train with AMP
""""""""""""""
Note: Training with ``GradScaler`` requires hardware support for ``FP64``. ``FP64`` is not natively supported by the Intel® Arc™ A-Series Graphics. If you run your workloads on Intel® Arc™ A-Series Graphics, please disable ``GradScaler``.
.. note::
Training with ``GradScaler`` requires hardware support for ``FP64``. ``FP64`` is not natively supported by the Intel® Arc™ A-Series Graphics. If you run your workloads on Intel® Arc™ A-Series Graphics, please disable ``GradScaler``.
.. code-block::
.. code-block:: python
import torch
import torchvision
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
use_amp=True
use_amp=True
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
scaler = torch.amp.GradScaler(device="xpu", enabled=use_amp)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
scaler = torch.amp.GradScaler(device="xpu", enabled=use_amp)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
print(f"Initiating training")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
# set dtype=torch.bfloat16 for BF16
with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=use_amp):
output = model(data)
loss = criterion(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if (batch_idx + 1) % 10 == 0:
print(f"Initiating training")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
# set dtype=torch.bfloat16 for BF16
with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=use_amp):
output = model(data)
loss = criterion(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")
print("Execution finished")
Train with ``torch.compile``
""""""""""""""""""""""""""""
.. code-block::
.. code-block:: python
import torch
import torchvision
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
model = torch.compile(model)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
model = torch.compile(model)
print(f"Initiating training with torch compile")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 10 == 0:
print(f"Initiating training with torch compile")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")
print("Execution finished")