diff --git a/tensorflow/go/op/wrappers.go b/tensorflow/go/op/wrappers.go index 615c386858e..ebe4a51116b 100644 --- a/tensorflow/go/op/wrappers.go +++ b/tensorflow/go/op/wrappers.go @@ -1904,10 +1904,10 @@ func DequantizeMode(value string) DequantizeAttr { // If the mode is 'MIN_FIRST', then this approach is used: // // ```c++ -// number_of_steps = 1 << (# of bits in T) -// range_adjust = number_of_steps / (number_of_steps - 1) +// num_discrete_values = 1 << (# of bits in T) +// range_adjust = num_discrete_values / (num_discrete_values - 1) // range = (range_max - range_min) * range_adjust -// range_scale = range / number_of_steps +// range_scale = range / num_discrete_values // const double offset_input = static_cast(input) - lowest_quantized; // result = range_min + ((input - numeric_limits::min()) * range_scale) // ``` @@ -13766,10 +13766,10 @@ func QuantizeV2RoundMode(value string) QuantizeV2Attr { // If the mode is 'MIN_FIRST', then this approach is used: // // ``` -// number_of_steps = 1 << (# of bits in T) -// range_adjust = number_of_steps / (number_of_steps - 1) +// num_discrete_values = 1 << (# of bits in T) +// range_adjust = num_discrete_values / (num_discrete_values - 1) // range = (range_max - range_min) * range_adjust -// range_scale = number_of_steps / range +// range_scale = num_discrete_values / range // quantized = round(input * range_scale) - round(range_min * range_scale) + // numeric_limits::min() // quantized = max(quantized, numeric_limits::min())