diff --git a/tensorflow/lite/kernels/conv.cc b/tensorflow/lite/kernels/conv.cc index 73340a7df3e..7899e06ded6 100644 --- a/tensorflow/lite/kernels/conv.cc +++ b/tensorflow/lite/kernels/conv.cc @@ -749,11 +749,12 @@ void EvalFloat(TfLiteContext* context, TfLiteNode* node, } template -void EvalHybridPerChannel(TfLiteContext* context, TfLiteNode* node, - TfLiteConvParams* params, OpData* data, - TfLiteTensor* input, TfLiteTensor* filter, - TfLiteTensor* bias, TfLiteTensor* im2col, - TfLiteTensor* output) { +TfLiteStatus EvalHybridPerChannel(TfLiteContext* context, TfLiteNode* node, + TfLiteConvParams* params, OpData* data, + const TfLiteTensor* input, + const TfLiteTensor* filter, + const TfLiteTensor* bias, + TfLiteTensor* im2col, TfLiteTensor* output) { float output_activation_min, output_activation_max; CalculateActivationRange(params->activation, &output_activation_min, &output_activation_max); @@ -917,8 +918,9 @@ TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node) { case kTfLiteFloat32: if (filter->type == kTfLiteUInt8 || filter->type == kTfLiteInt8) { if (data->is_hybrid_per_channel) { - EvalHybridPerChannel(context, node, params, data, input, - filter, bias, im2col, output); + TF_LITE_ENSURE_OK(context, EvalHybridPerChannel( + context, node, params, data, input, + filter, bias, im2col, output)); } else { TfLiteTensor* accum_scratch = &context->tensors[node->temporaries