Files
pytorch/caffe2/python/optimizer_test.py
Aapo Kyrola 44257ea5ed automatically infer device scope for param
Summary:
hankun is using the optimizer, but having mixed set of of GPU and CPU operators. Currently this won't work with optimizer since it adds optimizers for all parameters in the current device scope. But we can actually infer the device that a param belongs to by looking at the device option in the param_init_net.

Added a test as well.

Reviewed By: salexspb

Differential Revision: D5133652

fbshipit-source-id: ad8689d75ac1f5c78981bae1b6978fe91e40ef0f
2017-05-30 12:02:19 -07:00

66 lines
2.7 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from caffe2.python.optimizer import build_sgd, build_ftrl, build_adagrad, build_adam
from caffe2.python.optimizer_test_util import OptimizerTestBase
from caffe2.python.test_util import TestCase
from caffe2.python import workspace
import numpy as np
class TestSgd(OptimizerTestBase, TestCase):
def build_optimizer(self, model):
self._skip_gpu = False
return build_sgd(model, base_learning_rate=0.1)
def check_optimizer(self, optimizer):
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
self.assertFalse(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().shared:
tensor = workspace.FetchBlob(param)
np.testing.assert_allclose(np.array([1.0]), tensor, atol=1e-5)
class TestFtrl(OptimizerTestBase, TestCase):
def build_optimizer(self, model):
self._skip_gpu = True
return build_ftrl(
model, engine=None, alpha=1.0, beta=0.1, lambda1=0.0, lambda2=0.0)
def check_optimizer(self, optimizer):
self.assertFalse(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
class TestAdagrad(OptimizerTestBase, TestCase):
def build_optimizer(self, model):
self._skip_gpu = False
return build_adagrad(model, base_learning_rate=1.0)
def check_optimizer(self, optimizer):
self.assertFalse(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
class TestAdam(OptimizerTestBase, TestCase):
def build_optimizer(self, model):
self._skip_gpu = False
return build_adam(model, base_learning_rate=0.1)
def check_optimizer(self, optimizer):
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
self.assertTrue(workspace.HasBlob("optimizer_iteration"))
iteration_tensor = workspace.FetchBlob("optimizer_iteration")
np.testing.assert_allclose(np.array([2000]),
iteration_tensor,
atol=1e-5)
for param in optimizer.get_auxiliary_parameters().shared:
workspace.FetchBlob(param)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)