mirror of
https://github.com/zebrajr/pytorch.git
synced 2026-01-15 12:15:51 +00:00
Summary: Currently the dataset cursor blob is using a fixed name. When we read from multi input tables, the dataset cursor of each table is using the same blob. This messed up the split queue and crashed the reader pipelines (see the errors and failures in https://fb.quip.com/uzbIA7K0PgVe) Reviewed By: dragonxlwang, rayleichen Differential Revision: D5419863 fbshipit-source-id: 5983a3d8d2e286dc47c2ec38ed1dbbe30c7c9b49
322 lines
12 KiB
Python
322 lines
12 KiB
Python
## @package dataset
|
|
# Module caffe2.python.dataset
|
|
"""
|
|
Implementation of an in-memory dataset with structured schema.
|
|
|
|
Use this to store and iterate through datasets with complex schema that
|
|
fit in memory.
|
|
|
|
Iterating through entries of this dataset is very fast since the dataset
|
|
is stored as a set of native Caffe2 tensors, thus no type conversion or
|
|
deserialization is necessary.
|
|
"""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core, workspace
|
|
from caffe2.python.dataio import Reader, Writer
|
|
from caffe2.python.schema import (
|
|
Struct, from_blob_list, from_column_list, InitEmptyRecord)
|
|
import numpy as np
|
|
|
|
|
|
class _DatasetReader(Reader):
|
|
def __init__(self, dataset, name, batch_size=1):
|
|
"""Don't call this directly. Instead, use dataset.reader()"""
|
|
Reader.__init__(self, dataset.content())
|
|
self.dataset = dataset
|
|
self.name = name or (dataset.name + '_cursor')
|
|
self.batch_size = batch_size
|
|
self.cursor = None
|
|
|
|
def setup_ex(self, init_net, exit_net):
|
|
if self.cursor is None:
|
|
self.cursor = init_net.CreateTreeCursor(
|
|
[],
|
|
init_net.NextScopedBlob(self.name),
|
|
fields=self.dataset.fields)
|
|
|
|
def read(self, read_net):
|
|
assert self.cursor, 'setup not called.'
|
|
content = self.dataset.content()
|
|
with core.NameScope(read_net.NextName(self.name)):
|
|
fields = read_net.ReadNextBatch(
|
|
[self.cursor] + content.field_blobs(),
|
|
content.field_names(),
|
|
batch_size=self.batch_size)
|
|
if type(fields) is core.BlobReference:
|
|
fields = [fields]
|
|
return (read_net.IsEmpty([fields[0]]), fields)
|
|
|
|
def reset(self, net):
|
|
net.ResetCursor([self.cursor], [])
|
|
|
|
|
|
class _DatasetRandomReader(Reader):
|
|
def __init__(self, dataset, name, indices, batch_size=1, loop_over=False):
|
|
"""Don't call this directly. Instead, use dataset.random_reader()"""
|
|
Reader.__init__(self, dataset.content())
|
|
self.dataset = dataset
|
|
self.cursor = None
|
|
self.name = name or (dataset.name + '_cursor')
|
|
self.indices = indices
|
|
self.batch_size = batch_size
|
|
self.loop_over = loop_over
|
|
|
|
def setup_ex(self, init_net, exit_net):
|
|
if self.cursor is None:
|
|
self.cursor = init_net.CreateTreeCursor(
|
|
[],
|
|
[self.name],
|
|
fields=self.dataset.fields)
|
|
|
|
def reset(self, net):
|
|
net.ResetCursor([self.cursor], [])
|
|
|
|
def computeoffset(self, net):
|
|
self.reset(net)
|
|
offsets = net.ComputeOffset(
|
|
[self.cursor] + self.dataset.content().field_blobs(),
|
|
'offsets')
|
|
self.offsets = offsets
|
|
|
|
def sort_and_shuffle(self, net, sort_by_field=None,
|
|
shuffle_size=1, batch_size=1):
|
|
# no sorting by default
|
|
content = self.dataset.content()
|
|
sort_by_field_idx = -1
|
|
if sort_by_field:
|
|
assert sort_by_field in content.field_names(), (
|
|
'Must be valid field.')
|
|
sort_by_field_idx = content.field_names().index(sort_by_field)
|
|
self.reset(net)
|
|
|
|
indices = net.SortAndShuffle(
|
|
[self.cursor] + content.field_blobs(),
|
|
'indices',
|
|
sort_by_field_idx=sort_by_field_idx,
|
|
shuffle_size=shuffle_size,
|
|
batch_size=batch_size)
|
|
self.indices = indices
|
|
|
|
def read(self, read_net):
|
|
with core.NameScope(read_net.NextName(self.name)):
|
|
fields = read_net.ReadRandomBatch(
|
|
[self.cursor, self.indices, self.offsets] + (
|
|
self.dataset.content().field_blobs()),
|
|
self.dataset.content().field_names(),
|
|
batch_size=self.batch_size,
|
|
loop_over=self.loop_over)
|
|
return (read_net.IsEmpty([fields[0]]), fields)
|
|
|
|
|
|
class _DatasetWriter(Writer):
|
|
def __init__(self, content):
|
|
"""Don't call this directly. Use dataset.writer() instead."""
|
|
self._content = content
|
|
self.mutex = None
|
|
|
|
def setup_ex(self, init_net, exit_net):
|
|
if self.mutex is None:
|
|
self.mutex = init_net.CreateMutex([])
|
|
|
|
def write(self, writer_net, fields):
|
|
"""
|
|
Add operations to `net` that append the blobs in `fields` to the end
|
|
of the dataset. An additional operator will also be added that checks
|
|
the consistency of the data in `fields` against the dataset schema.
|
|
|
|
Args:
|
|
writer_net: The net that will contain the Append operators.
|
|
fields: A list of BlobReference to be appeneded to this dataset.
|
|
"""
|
|
assert self.mutex is not None, 'setup not called.'
|
|
field_blobs = self._content.field_blobs()
|
|
assert len(fields) == len(field_blobs), (
|
|
'Expected %s fields, got %s.' % (len(field_blobs), len(fields)))
|
|
writer_net.CheckDatasetConsistency(
|
|
fields, [], fields=self._content.field_names())
|
|
writer_net.AtomicAppend(
|
|
[self.mutex] + field_blobs + list(fields),
|
|
field_blobs)
|
|
|
|
def commit(self, finish_net):
|
|
"""Commit is a no-op for an in-memory dataset."""
|
|
pass
|
|
|
|
|
|
def Const(net, value, dtype=None, name=None):
|
|
"""
|
|
Create a 'constant' by first creating an external input in the given
|
|
net, and then feeding the corresponding blob with its provided value
|
|
in the current workspace. The name is automatically generated in order
|
|
to avoid clashes with existing blob names.
|
|
"""
|
|
assert isinstance(net, core.Net), 'net must be a core.Net instance.'
|
|
value = np.array(value, dtype=dtype)
|
|
blob = net.AddExternalInput(net.NextName(prefix=name))
|
|
workspace.FeedBlob(str(blob), value)
|
|
return blob
|
|
|
|
|
|
def execution_step_with_progress(name, init_net, substeps, rows_read):
|
|
# progress reporter
|
|
report_net = core.Net('report_net')
|
|
report_net.Print([rows_read], [])
|
|
return core.execution_step(
|
|
name,
|
|
substeps,
|
|
report_net=report_net,
|
|
concurrent_substeps=True,
|
|
report_interval=5)
|
|
|
|
|
|
class Dataset(object):
|
|
"""Represents an in-memory dataset with fixed schema.
|
|
|
|
Use this to store and iterate through datasets with complex schema that
|
|
fit in memory.
|
|
|
|
Iterating through entries of this dataset is very fast since the dataset
|
|
is stored as a set of native Caffe2 tensors, thus no type conversion or
|
|
deserialization is necessary.
|
|
"""
|
|
|
|
def __init__(self, fields, name=None):
|
|
"""Create an un-initialized dataset with schema provided by `fields`.
|
|
|
|
Before this dataset can be used, it must be initialized, either by
|
|
`init_empty` or `init_from_dataframe`.
|
|
|
|
Args:
|
|
fields: either a schema.Struct or a list of field names in a format
|
|
compatible with the one described in schema.py.
|
|
name: optional name to prepend to blobs that will store the data.
|
|
"""
|
|
assert isinstance(fields, list) or isinstance(fields, Struct), (
|
|
'fields must be either a Struct or a list of raw field names.')
|
|
if isinstance(fields, list):
|
|
fields = from_column_list(fields)
|
|
self.schema = fields
|
|
self.fields = fields.field_names()
|
|
self.field_types = fields.field_types()
|
|
self.name = name or 'dataset'
|
|
self.field_blobs = fields.field_blobs() if fields.has_blobs() else None
|
|
|
|
def init_empty(self, init_net):
|
|
"""Initialize the blobs for this dataset with empty values.
|
|
|
|
Empty arrays will be immediately fed into the current workspace,
|
|
and `init_net` will take those blobs as external inputs.
|
|
"""
|
|
self.field_blobs = InitEmptyRecord(
|
|
init_net, self.schema.clone_schema()).field_blobs()
|
|
|
|
def init_from_dataframe(self, net, dataframe):
|
|
"""Initialize the blobs for this dataset from a Pandas dataframe.
|
|
|
|
Each column of the dataframe will be immediately fed into the current
|
|
workspace, and the `net` will take this blobs as external inputs.
|
|
"""
|
|
assert len(self.fields) == len(dataframe.columns)
|
|
self.field_blobs = [
|
|
Const(net, dataframe.as_matrix([col]).flatten(), name=field)
|
|
for col, field in enumerate(self.fields)]
|
|
|
|
def get_blobs(self):
|
|
"""
|
|
Return the list of BlobReference pointing to the blobs that contain
|
|
the data for this dataset.
|
|
"""
|
|
assert self
|
|
return self.field_blobs
|
|
|
|
def content(self):
|
|
"""
|
|
Return a Record of BlobReferences pointing to the full content of
|
|
this dataset.
|
|
"""
|
|
return from_blob_list(self.schema, self.field_blobs)
|
|
|
|
def field_names(self):
|
|
"""Return the list of field names for this dataset."""
|
|
return self.fields
|
|
|
|
def field_types(self):
|
|
"""
|
|
Return the list of field dtypes for this dataset.
|
|
|
|
If a list of strings, not a schema.Struct, was passed to the
|
|
constructor, this will return a list of dtype(np.void).
|
|
"""
|
|
return self.field_types
|
|
|
|
def reader(self, init_net=None, cursor_name=None, batch_size=1):
|
|
"""Create a Reader object that is used to iterate through the dataset.
|
|
|
|
This will append operations to `init_net` that create a TreeCursor,
|
|
used to iterate through the data.
|
|
|
|
NOTE: Currently, it is not safe to append to a dataset while reading.
|
|
|
|
Args:
|
|
init_net: net that will be run once to create the cursor.
|
|
cursor_name: optional name for the blob containing a pointer
|
|
to the cursor.
|
|
batch_size: how many samples to read per iteration.
|
|
|
|
Returns:
|
|
A _DatasetReader that can be used to create operators that will
|
|
iterate through the dataset.
|
|
"""
|
|
assert self.field_blobs, 'Dataset not initialized.'
|
|
reader = _DatasetReader(self, cursor_name, batch_size)
|
|
if init_net is not None:
|
|
reader.setup_ex(init_net, None)
|
|
return reader
|
|
|
|
def random_reader(self, init_net=None, indices=None, cursor_name=None,
|
|
batch_size=1, loop_over=False):
|
|
"""Create a Reader object that is used to iterate through the dataset.
|
|
|
|
NOTE: The reader order depends on the order in indices.
|
|
|
|
Args:
|
|
init_net: net that will be run once to create the cursor.
|
|
indices: blob of reading order
|
|
cursor_name: optional name for the blob containing a pointer
|
|
to the cursor.
|
|
batch_size: how many samples to read per iteration.
|
|
loop_over: repeat the dataset indefinitely (in the same order)
|
|
|
|
Returns:
|
|
A DatasetReader that can be used to create operators that will
|
|
iterate through the dataset according to indices.
|
|
"""
|
|
assert self.field_blobs, 'Dataset not initialized.'
|
|
reader = _DatasetRandomReader(
|
|
self, cursor_name, indices, batch_size, loop_over)
|
|
if init_net is not None:
|
|
reader.setup_ex(init_net, None)
|
|
return reader
|
|
|
|
def writer(self, init_net=None):
|
|
"""Create a Writer that can be used to append entries into the dataset.
|
|
|
|
NOTE: Currently, it is not safe to append to a dataset
|
|
while reading from it.
|
|
NOTE: Currently implementation of writer is not thread safe.
|
|
TODO: fixme
|
|
|
|
Args:
|
|
init_net: net that will be run once in order to create the writer.
|
|
(currently not used)
|
|
"""
|
|
assert self.field_blobs, 'Dataset not initialized.'
|
|
writer = _DatasetWriter(self.content())
|
|
if init_net is not None:
|
|
writer.setup_ex(init_net, None)
|
|
return writer
|