Summary:
Data parallel model did not support sparse operations, nor gradients computed on CPU ops.
Currently sparse operations are done on CPU, so there is no point of "data parallelizing" them. I had to make a few changes to data_parallel_model to support this:
1. Model can have params that are added prior to adding the data parallel part. For example, a lookup table of word vectors would be a parameter that is non-parallel.
2. Thus, when data parallel model is called, it will separate the non-parallel params and avoid working on them. Note: when we add distributed version, we need to explicitly handle them with AllGather!
This works nicely since Caffe2 automatically adds the backward concat-operator when multiple ops gather from the same blob.
I also added support for data parallel CPU ops, which might be necessary in cases when we don't have GPU implemenation of some ops.
Test in data_parallel_model_test validates the correctness of the code by running the same trainer on different number of gpus and checking the end result is same.
Reviewed By: jhcross
Differential Revision: D4649208
fbshipit-source-id: e3b7ae701ead468dc94c52a976eafec5c9831097