mirror of
https://github.com/zebrajr/pytorch.git
synced 2026-01-15 12:15:51 +00:00
Motivation is to fix `torch.signal.windows.kaiser` (see https://github.com/pytorch/pytorch/issues/164712 ), which started to fail, because `c10::metal::pow(x, 2)` is no longer identical to `x * x` - Redispatch to `reciprocal`/`sqrt`/`rsqrt` when scalar is `2.0`/`.5`/`-.5` respectively - Implement pow operation for complex numbers using $a^b = e^{b \cdot \log(a)} = e^{b \cdot (\log(r) + i\theta)}$ if $a=r e^{i\theta}$ - This also fixes backward for `tanh` Pull Request resolved: https://github.com/pytorch/pytorch/pull/170077 Approved by: https://github.com/Skylion007
470 lines
11 KiB
C++
470 lines
11 KiB
C++
// Metal helper functions
|
|
#pragma once
|
|
#include <c10/metal/common.h>
|
|
#include <metal_stdlib>
|
|
|
|
namespace c10 {
|
|
namespace metal {
|
|
|
|
namespace detail {
|
|
template <typename T>
|
|
struct vectypes {};
|
|
|
|
template <>
|
|
struct vectypes<float> {
|
|
using type4 = float4;
|
|
using type3 = float3;
|
|
using type2 = float2;
|
|
};
|
|
|
|
template <>
|
|
struct vectypes<half> {
|
|
using type4 = half4;
|
|
using type3 = half3;
|
|
using type2 = half2;
|
|
};
|
|
|
|
template <>
|
|
struct vectypes<bfloat> {
|
|
using type4 = bfloat4;
|
|
using type3 = bfloat3;
|
|
using type2 = bfloat2;
|
|
};
|
|
|
|
template <>
|
|
struct vectypes<short> {
|
|
using type4 = short4;
|
|
using type3 = short3;
|
|
using type2 = short2;
|
|
};
|
|
|
|
template <>
|
|
struct vectypes<int> {
|
|
using type4 = int4;
|
|
using type3 = int3;
|
|
using type2 = int2;
|
|
};
|
|
|
|
template <>
|
|
struct vectypes<long> {
|
|
using type4 = short4;
|
|
using type3 = short3;
|
|
using type2 = short2;
|
|
};
|
|
|
|
template <typename T>
|
|
struct OpMathType {
|
|
using type = T;
|
|
};
|
|
|
|
template <>
|
|
struct OpMathType<half> {
|
|
using type = float;
|
|
};
|
|
|
|
template <>
|
|
struct OpMathType<short> {
|
|
using type = int;
|
|
};
|
|
|
|
template <>
|
|
struct OpMathType<char> {
|
|
using type = int;
|
|
};
|
|
|
|
template <>
|
|
struct OpMathType<uchar> {
|
|
using type = int;
|
|
};
|
|
|
|
template <>
|
|
struct OpMathType<bfloat> {
|
|
using type = float;
|
|
};
|
|
|
|
// Type promotion structure for higher precision accumulation
|
|
template <typename T>
|
|
struct AccumulationType {
|
|
using type = T;
|
|
};
|
|
|
|
// Specialization for half - promote to float for accumulation
|
|
template <>
|
|
struct AccumulationType<half> {
|
|
using type = float;
|
|
};
|
|
|
|
// Specialization for bfloat - promote to float for accumulation
|
|
template <>
|
|
struct AccumulationType<bfloat> {
|
|
using type = float;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
template <typename T>
|
|
::metal::enable_if_t<::metal::is_floating_point_v<T>, T> max(T a, T b) {
|
|
return ::metal::isunordered(a, b) ? NAN : ::metal::max(a, b);
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
::metal::enable_if_t<::metal::is_integral_v<T>&& ::metal::is_integral_v<U>, T>
|
|
max(T a, U b) {
|
|
return ::metal::max(a, static_cast<T>(b));
|
|
}
|
|
|
|
template <typename T>
|
|
::metal::enable_if_t<::metal::is_floating_point_v<T>, T> min(T a, T b) {
|
|
return ::metal::isunordered(a, b) ? NAN : ::metal::min(a, b);
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
::metal::enable_if_t<::metal::is_integral_v<T>&& ::metal::is_integral_v<U>, T>
|
|
min(T a, U b) {
|
|
return ::metal::min(a, static_cast<T>(b));
|
|
}
|
|
|
|
template <>
|
|
inline bfloat min(bfloat a, bfloat b) {
|
|
return bfloat(
|
|
::metal::isunordered(a, b) ? NAN : ::metal::min(float(a), float(b)));
|
|
}
|
|
|
|
template <>
|
|
inline bfloat max(bfloat a, bfloat b) {
|
|
return bfloat(
|
|
::metal::isunordered(a, b) ? NAN : ::metal::max(float(a), float(b)));
|
|
}
|
|
|
|
template <typename T>
|
|
using vec2type_t = typename detail::vectypes<T>::type2;
|
|
|
|
template <typename T>
|
|
using vec4type_t = typename detail::vectypes<T>::type4;
|
|
|
|
template <typename T>
|
|
using opmath_t = typename detail::OpMathType<T>::type;
|
|
|
|
template <typename T>
|
|
using accum_t = typename detail::AccumulationType<T>::type;
|
|
|
|
// TODO: Move it to type_traits header may be
|
|
template <typename F, typename... Args>
|
|
using result_of = decltype(::metal::declval<F>()(::metal::declval<Args>()...));
|
|
|
|
template <typename T>
|
|
constexpr constant bool is_complex_v =
|
|
::metal::is_same_v<T, float2> || ::metal::is_same_v<T, half2>;
|
|
|
|
template <typename T>
|
|
constexpr constant bool is_scalar_floating_point_v =
|
|
::metal::is_floating_point_v<T> && ::metal::is_scalar_v<T>;
|
|
|
|
template <typename T>
|
|
constexpr constant bool is_scalar_integral_v =
|
|
::metal::is_integral_v<T> && ::metal::is_scalar_v<T>;
|
|
|
|
template <typename U, typename V>
|
|
using common_dtype = decltype(U(0) + V(0));
|
|
|
|
// floor_divide
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<
|
|
is_scalar_integral_v<T> && is_scalar_integral_v<U>,
|
|
bool> = true>
|
|
inline common_dtype<T, U> floor_divide(T x, U y) {
|
|
const auto quot = x / y;
|
|
return (x < 0) == (y < 0) ? quot : (x % y != 0) ? quot - 1 : quot;
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<
|
|
is_scalar_floating_point_v<T> && is_scalar_floating_point_v<U>,
|
|
bool> = true>
|
|
inline common_dtype<T, U> floor_divide(T x, U y) {
|
|
return ::metal::floor(x / y);
|
|
}
|
|
|
|
// fmod
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<
|
|
is_scalar_integral_v<T> && is_scalar_integral_v<U>,
|
|
bool> = true>
|
|
inline common_dtype<T, U> fmod(T x, U y) {
|
|
return x % y;
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<
|
|
is_scalar_floating_point_v<T> && is_scalar_floating_point_v<U>,
|
|
bool> = true>
|
|
inline common_dtype<T, U> fmod(T x, U y) {
|
|
return ::metal::fmod(x, y);
|
|
}
|
|
|
|
// cast_to primitives
|
|
// - No-op if types as the same
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<::metal::is_same_v<U, T>, bool> = true>
|
|
inline T cast_to(const U from) {
|
|
return from;
|
|
}
|
|
// - Simple cast between scalar and complex dtypes
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<
|
|
!::metal::is_same_v<U, T> && (is_complex_v<T> == is_complex_v<U>),
|
|
bool> = true>
|
|
inline T cast_to(const U from) {
|
|
return static_cast<T>(from);
|
|
}
|
|
|
|
// - Scalar to complex
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<is_complex_v<T> && !is_complex_v<U>, bool> = true>
|
|
inline T cast_to(const U from) {
|
|
return T(float(from), 0.0);
|
|
}
|
|
// - Complex to scalar (should not really be used, but exists for compliteness)
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<!is_complex_v<T> && is_complex_v<U>, bool> = true>
|
|
inline T cast_to(const U from) {
|
|
return static_cast<T>(from.x);
|
|
}
|
|
|
|
// Generalizable math operators (used for both scalar and complex)
|
|
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<!is_complex_v<T>, bool> = true>
|
|
inline common_dtype<T, U> mul(const T x, const U y) {
|
|
return x * y;
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<is_complex_v<T> && is_complex_v<U>, bool> = true>
|
|
inline common_dtype<T, U> mul(const T x, const U y) {
|
|
return T(x.x * y.x - x.y * y.y, x.x * y.y + x.y * y.x);
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<!is_complex_v<T>, bool> = true>
|
|
inline common_dtype<T, U> div(const T x, const U y) {
|
|
return x / y;
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<is_complex_v<T> && is_complex_v<U>, bool> = true>
|
|
inline common_dtype<T, U> div(const T x, const U y) {
|
|
return T(::metal::dot(x, y), x.y * y.x - x.x * y.y) / ::metal::dot(y, y);
|
|
}
|
|
|
|
// Remainder operator
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<
|
|
is_scalar_floating_point_v<T> || is_scalar_floating_point_v<U>,
|
|
bool> = true>
|
|
inline float remainder(const T x, const U y) {
|
|
const auto x_f = static_cast<float>(x);
|
|
const auto y_f = static_cast<float>(y);
|
|
return x_f - y_f * floor_divide(x_f, y_f);
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<
|
|
is_scalar_integral_v<T> && is_scalar_integral_v<U>,
|
|
bool> = true>
|
|
inline common_dtype<T, U> remainder(const T x, const U y) {
|
|
auto rc = x % y;
|
|
return rc == 0 || (x ^ y) > 0 ? rc : rc + y;
|
|
}
|
|
|
|
// Based on aten/src/ATen/native/Pow.h
|
|
template <
|
|
typename T,
|
|
::metal::enable_if_t<is_scalar_integral_v<T>, bool> = true>
|
|
inline T powi_impl(T a, T b) {
|
|
T result = 1;
|
|
while (b) {
|
|
if (b & 1) {
|
|
result *= a;
|
|
}
|
|
b /= 2;
|
|
a *= a;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<
|
|
is_scalar_floating_point_v<T> || is_scalar_floating_point_v<U>,
|
|
bool> = true>
|
|
inline float pow(T a, U b) {
|
|
return ::metal::precise::pow(static_cast<float>(a), static_cast<float>(b));
|
|
}
|
|
|
|
// Complex pow - use polar form: a = r*e^(i*theta)
|
|
// a^b = exp(b * log(a)) = exp(b * (log(r) + i*theta))
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<is_complex_v<T> && is_complex_v<U>, bool> = true>
|
|
inline float2 pow(T a, U b) {
|
|
// Convert a to polar form
|
|
// Use explicit computation instead of length() due to numerical issues
|
|
const auto r = ::metal::precise::sqrt(a.x * a.x + a.y * a.y);
|
|
|
|
// Special case: if r is 0, return 0
|
|
if (r == 0.0) {
|
|
return float2(0.0, 0.0);
|
|
}
|
|
|
|
const auto theta = ::metal::precise::atan2(a.y, a.x);
|
|
const auto log_r = ::metal::precise::log(r);
|
|
|
|
// Calculate a^b = r^b * e^(i*theta*b)
|
|
// new_r = exp(b.x * log(r) - b.y * theta)
|
|
// new_theta = b.x * theta + b.y * log(r)
|
|
const auto new_r = ::metal::precise::exp(b.x * log_r - b.y * theta);
|
|
const auto new_theta = b.x * theta + b.y * log_r;
|
|
|
|
return float2(
|
|
new_r * ::metal::precise::cos(new_theta),
|
|
new_r * ::metal::precise::sin(new_theta));
|
|
}
|
|
|
|
// Integral pow - unsigned types
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<
|
|
is_scalar_integral_v<T> && !::metal::is_signed_v<T>,
|
|
bool> = true>
|
|
inline T pow(T a, U b) {
|
|
return powi_impl(a, T(b));
|
|
}
|
|
|
|
// Integral pow - signed types
|
|
template <
|
|
typename T,
|
|
typename U,
|
|
::metal::enable_if_t<
|
|
is_scalar_integral_v<T>&& ::metal::is_signed_v<T>,
|
|
bool> = true>
|
|
inline T pow(T a, U b) {
|
|
if (b < 0) {
|
|
if (a == 1) {
|
|
return 1;
|
|
} else if (a == -1) {
|
|
auto negative = (-b) % static_cast<T>(2);
|
|
return negative ? -1 : 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
return powi_impl(a, T(b));
|
|
}
|
|
|
|
// Based on algorithm described in
|
|
// https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1202
|
|
inline float log1p(float x) {
|
|
const auto xp1 = 1.0f + x;
|
|
// First two elements of Taylor series for log(1+x) in Horner's form are:
|
|
// log(1+x) = x * (1 - x * (.5 ...)), but if 1 + x == x, then it's just x
|
|
if (xp1 == 1.0f) {
|
|
return x;
|
|
}
|
|
auto rc = ::metal::precise::log(xp1);
|
|
if (x > -.5 && x < .5) {
|
|
// Order of operations is important here for higher precision
|
|
rc *= x / (xp1 - 1.0f);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
// The function is ported from mlx
|
|
inline float2 log1p(float2 in) {
|
|
float x = in.x;
|
|
float y = in.y;
|
|
float zabs = ::metal::precise::sqrt(x * x + y * y);
|
|
float theta = ::metal::atan2(y, x + 1);
|
|
if (zabs < 0.5f) {
|
|
float r = x * (2 + x) + y * y;
|
|
if (r == 0) { // handle underflow
|
|
return {x, theta};
|
|
}
|
|
return {0.5f * log1p(r), theta};
|
|
} else {
|
|
auto z0 = ::metal::sqrt((x + 1) * (x + 1) + y * y);
|
|
return {::metal::log(z0), theta};
|
|
}
|
|
}
|
|
|
|
template <typename T1, typename T2 = T1>
|
|
struct pair {
|
|
T1 first;
|
|
T2 second;
|
|
};
|
|
|
|
template <typename T>
|
|
inline T conj(T a) {
|
|
return a;
|
|
}
|
|
|
|
template <>
|
|
inline half2 conj(half2 a) {
|
|
return half2(a.x, -a.y);
|
|
}
|
|
|
|
template <>
|
|
inline float2 conj(float2 a) {
|
|
return float2(a.x, -a.y);
|
|
}
|
|
|
|
#define INSTANTIATE_FOR_ALL_TYPES(MACRO) \
|
|
MACRO(float); \
|
|
MACRO(half); \
|
|
MACRO(bfloat); \
|
|
MACRO(float2); \
|
|
MACRO(long); \
|
|
MACRO(char); \
|
|
MACRO(uchar); \
|
|
MACRO(short); \
|
|
MACRO(int);
|
|
|
|
#define INSTANTIATE_FOR_FLOAT_TYPES(MACRO) \
|
|
MACRO(float); \
|
|
MACRO(half); \
|
|
MACRO(bfloat);
|
|
|
|
} // namespace metal
|
|
} // namespace c10
|