Files
pytorch/c10/metal/utils.h
Nikita Shulga 48f3158d1d [MPS] Migrate pow_tensor_scalar/reciprocal ops to Metal shaders (#170077)
Motivation is  to fix `torch.signal.windows.kaiser` (see https://github.com/pytorch/pytorch/issues/164712 ), which started to fail, because `c10::metal::pow(x, 2)` is no longer identical to `x * x`
- Redispatch to `reciprocal`/`sqrt`/`rsqrt` when scalar is `2.0`/`.5`/`-.5` respectively
- Implement pow operation for complex numbers using $a^b = e^{b \cdot \log(a)} = e^{b \cdot (\log(r) + i\theta)}$ if $a=r e^{i\theta}$
- This also fixes backward for `tanh`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/170077
Approved by: https://github.com/Skylion007
2025-12-17 06:55:42 +00:00

470 lines
11 KiB
C++

// Metal helper functions
#pragma once
#include <c10/metal/common.h>
#include <metal_stdlib>
namespace c10 {
namespace metal {
namespace detail {
template <typename T>
struct vectypes {};
template <>
struct vectypes<float> {
using type4 = float4;
using type3 = float3;
using type2 = float2;
};
template <>
struct vectypes<half> {
using type4 = half4;
using type3 = half3;
using type2 = half2;
};
template <>
struct vectypes<bfloat> {
using type4 = bfloat4;
using type3 = bfloat3;
using type2 = bfloat2;
};
template <>
struct vectypes<short> {
using type4 = short4;
using type3 = short3;
using type2 = short2;
};
template <>
struct vectypes<int> {
using type4 = int4;
using type3 = int3;
using type2 = int2;
};
template <>
struct vectypes<long> {
using type4 = short4;
using type3 = short3;
using type2 = short2;
};
template <typename T>
struct OpMathType {
using type = T;
};
template <>
struct OpMathType<half> {
using type = float;
};
template <>
struct OpMathType<short> {
using type = int;
};
template <>
struct OpMathType<char> {
using type = int;
};
template <>
struct OpMathType<uchar> {
using type = int;
};
template <>
struct OpMathType<bfloat> {
using type = float;
};
// Type promotion structure for higher precision accumulation
template <typename T>
struct AccumulationType {
using type = T;
};
// Specialization for half - promote to float for accumulation
template <>
struct AccumulationType<half> {
using type = float;
};
// Specialization for bfloat - promote to float for accumulation
template <>
struct AccumulationType<bfloat> {
using type = float;
};
} // namespace detail
template <typename T>
::metal::enable_if_t<::metal::is_floating_point_v<T>, T> max(T a, T b) {
return ::metal::isunordered(a, b) ? NAN : ::metal::max(a, b);
}
template <typename T, typename U>
::metal::enable_if_t<::metal::is_integral_v<T>&& ::metal::is_integral_v<U>, T>
max(T a, U b) {
return ::metal::max(a, static_cast<T>(b));
}
template <typename T>
::metal::enable_if_t<::metal::is_floating_point_v<T>, T> min(T a, T b) {
return ::metal::isunordered(a, b) ? NAN : ::metal::min(a, b);
}
template <typename T, typename U>
::metal::enable_if_t<::metal::is_integral_v<T>&& ::metal::is_integral_v<U>, T>
min(T a, U b) {
return ::metal::min(a, static_cast<T>(b));
}
template <>
inline bfloat min(bfloat a, bfloat b) {
return bfloat(
::metal::isunordered(a, b) ? NAN : ::metal::min(float(a), float(b)));
}
template <>
inline bfloat max(bfloat a, bfloat b) {
return bfloat(
::metal::isunordered(a, b) ? NAN : ::metal::max(float(a), float(b)));
}
template <typename T>
using vec2type_t = typename detail::vectypes<T>::type2;
template <typename T>
using vec4type_t = typename detail::vectypes<T>::type4;
template <typename T>
using opmath_t = typename detail::OpMathType<T>::type;
template <typename T>
using accum_t = typename detail::AccumulationType<T>::type;
// TODO: Move it to type_traits header may be
template <typename F, typename... Args>
using result_of = decltype(::metal::declval<F>()(::metal::declval<Args>()...));
template <typename T>
constexpr constant bool is_complex_v =
::metal::is_same_v<T, float2> || ::metal::is_same_v<T, half2>;
template <typename T>
constexpr constant bool is_scalar_floating_point_v =
::metal::is_floating_point_v<T> && ::metal::is_scalar_v<T>;
template <typename T>
constexpr constant bool is_scalar_integral_v =
::metal::is_integral_v<T> && ::metal::is_scalar_v<T>;
template <typename U, typename V>
using common_dtype = decltype(U(0) + V(0));
// floor_divide
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_integral_v<T> && is_scalar_integral_v<U>,
bool> = true>
inline common_dtype<T, U> floor_divide(T x, U y) {
const auto quot = x / y;
return (x < 0) == (y < 0) ? quot : (x % y != 0) ? quot - 1 : quot;
}
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_floating_point_v<T> && is_scalar_floating_point_v<U>,
bool> = true>
inline common_dtype<T, U> floor_divide(T x, U y) {
return ::metal::floor(x / y);
}
// fmod
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_integral_v<T> && is_scalar_integral_v<U>,
bool> = true>
inline common_dtype<T, U> fmod(T x, U y) {
return x % y;
}
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_floating_point_v<T> && is_scalar_floating_point_v<U>,
bool> = true>
inline common_dtype<T, U> fmod(T x, U y) {
return ::metal::fmod(x, y);
}
// cast_to primitives
// - No-op if types as the same
template <
typename T,
typename U,
::metal::enable_if_t<::metal::is_same_v<U, T>, bool> = true>
inline T cast_to(const U from) {
return from;
}
// - Simple cast between scalar and complex dtypes
template <
typename T,
typename U,
::metal::enable_if_t<
!::metal::is_same_v<U, T> && (is_complex_v<T> == is_complex_v<U>),
bool> = true>
inline T cast_to(const U from) {
return static_cast<T>(from);
}
// - Scalar to complex
template <
typename T,
typename U,
::metal::enable_if_t<is_complex_v<T> && !is_complex_v<U>, bool> = true>
inline T cast_to(const U from) {
return T(float(from), 0.0);
}
// - Complex to scalar (should not really be used, but exists for compliteness)
template <
typename T,
typename U,
::metal::enable_if_t<!is_complex_v<T> && is_complex_v<U>, bool> = true>
inline T cast_to(const U from) {
return static_cast<T>(from.x);
}
// Generalizable math operators (used for both scalar and complex)
template <
typename T,
typename U,
::metal::enable_if_t<!is_complex_v<T>, bool> = true>
inline common_dtype<T, U> mul(const T x, const U y) {
return x * y;
}
template <
typename T,
typename U,
::metal::enable_if_t<is_complex_v<T> && is_complex_v<U>, bool> = true>
inline common_dtype<T, U> mul(const T x, const U y) {
return T(x.x * y.x - x.y * y.y, x.x * y.y + x.y * y.x);
}
template <
typename T,
typename U,
::metal::enable_if_t<!is_complex_v<T>, bool> = true>
inline common_dtype<T, U> div(const T x, const U y) {
return x / y;
}
template <
typename T,
typename U,
::metal::enable_if_t<is_complex_v<T> && is_complex_v<U>, bool> = true>
inline common_dtype<T, U> div(const T x, const U y) {
return T(::metal::dot(x, y), x.y * y.x - x.x * y.y) / ::metal::dot(y, y);
}
// Remainder operator
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_floating_point_v<T> || is_scalar_floating_point_v<U>,
bool> = true>
inline float remainder(const T x, const U y) {
const auto x_f = static_cast<float>(x);
const auto y_f = static_cast<float>(y);
return x_f - y_f * floor_divide(x_f, y_f);
}
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_integral_v<T> && is_scalar_integral_v<U>,
bool> = true>
inline common_dtype<T, U> remainder(const T x, const U y) {
auto rc = x % y;
return rc == 0 || (x ^ y) > 0 ? rc : rc + y;
}
// Based on aten/src/ATen/native/Pow.h
template <
typename T,
::metal::enable_if_t<is_scalar_integral_v<T>, bool> = true>
inline T powi_impl(T a, T b) {
T result = 1;
while (b) {
if (b & 1) {
result *= a;
}
b /= 2;
a *= a;
}
return result;
}
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_floating_point_v<T> || is_scalar_floating_point_v<U>,
bool> = true>
inline float pow(T a, U b) {
return ::metal::precise::pow(static_cast<float>(a), static_cast<float>(b));
}
// Complex pow - use polar form: a = r*e^(i*theta)
// a^b = exp(b * log(a)) = exp(b * (log(r) + i*theta))
template <
typename T,
typename U,
::metal::enable_if_t<is_complex_v<T> && is_complex_v<U>, bool> = true>
inline float2 pow(T a, U b) {
// Convert a to polar form
// Use explicit computation instead of length() due to numerical issues
const auto r = ::metal::precise::sqrt(a.x * a.x + a.y * a.y);
// Special case: if r is 0, return 0
if (r == 0.0) {
return float2(0.0, 0.0);
}
const auto theta = ::metal::precise::atan2(a.y, a.x);
const auto log_r = ::metal::precise::log(r);
// Calculate a^b = r^b * e^(i*theta*b)
// new_r = exp(b.x * log(r) - b.y * theta)
// new_theta = b.x * theta + b.y * log(r)
const auto new_r = ::metal::precise::exp(b.x * log_r - b.y * theta);
const auto new_theta = b.x * theta + b.y * log_r;
return float2(
new_r * ::metal::precise::cos(new_theta),
new_r * ::metal::precise::sin(new_theta));
}
// Integral pow - unsigned types
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_integral_v<T> && !::metal::is_signed_v<T>,
bool> = true>
inline T pow(T a, U b) {
return powi_impl(a, T(b));
}
// Integral pow - signed types
template <
typename T,
typename U,
::metal::enable_if_t<
is_scalar_integral_v<T>&& ::metal::is_signed_v<T>,
bool> = true>
inline T pow(T a, U b) {
if (b < 0) {
if (a == 1) {
return 1;
} else if (a == -1) {
auto negative = (-b) % static_cast<T>(2);
return negative ? -1 : 1;
} else {
return 0;
}
}
return powi_impl(a, T(b));
}
// Based on algorithm described in
// https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1202
inline float log1p(float x) {
const auto xp1 = 1.0f + x;
// First two elements of Taylor series for log(1+x) in Horner's form are:
// log(1+x) = x * (1 - x * (.5 ...)), but if 1 + x == x, then it's just x
if (xp1 == 1.0f) {
return x;
}
auto rc = ::metal::precise::log(xp1);
if (x > -.5 && x < .5) {
// Order of operations is important here for higher precision
rc *= x / (xp1 - 1.0f);
}
return rc;
}
// The function is ported from mlx
inline float2 log1p(float2 in) {
float x = in.x;
float y = in.y;
float zabs = ::metal::precise::sqrt(x * x + y * y);
float theta = ::metal::atan2(y, x + 1);
if (zabs < 0.5f) {
float r = x * (2 + x) + y * y;
if (r == 0) { // handle underflow
return {x, theta};
}
return {0.5f * log1p(r), theta};
} else {
auto z0 = ::metal::sqrt((x + 1) * (x + 1) + y * y);
return {::metal::log(z0), theta};
}
}
template <typename T1, typename T2 = T1>
struct pair {
T1 first;
T2 second;
};
template <typename T>
inline T conj(T a) {
return a;
}
template <>
inline half2 conj(half2 a) {
return half2(a.x, -a.y);
}
template <>
inline float2 conj(float2 a) {
return float2(a.x, -a.y);
}
#define INSTANTIATE_FOR_ALL_TYPES(MACRO) \
MACRO(float); \
MACRO(half); \
MACRO(bfloat); \
MACRO(float2); \
MACRO(long); \
MACRO(char); \
MACRO(uchar); \
MACRO(short); \
MACRO(int);
#define INSTANTIATE_FOR_FLOAT_TYPES(MACRO) \
MACRO(float); \
MACRO(half); \
MACRO(bfloat);
} // namespace metal
} // namespace c10