Huan Gui
be757957ba
Support softmax with D == 0 ( #29167 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29167
As titled.
This fix is crucial as multi_channel splitting would create history that has no items (i.e., D == 0), which leads to flow failure.
Test Plan:
Unittest
flow test:
before fix: f148783160
after fix: f149082299
buck test mode/dev-nosan caffe2/caffe2/python/operator_test:softmax_ops_test
Reviewed By: xianjiec
Differential Revision: D18296081
fbshipit-source-id: e0bb2dc2c4e5b465e213f31e5c5ced3a7e1fd574
2019-11-11 00:46:10 -08:00
Mike Ruberry
991c2ac383
Disables flaky test_rand_quantization ( #29463 )
...
Summary:
See https://github.com/pytorch/pytorch/issues/28550 .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29463
Differential Revision: D18405669
Pulled By: mruberry
fbshipit-source-id: 2984c3896a9260a06fbf052afb06e0cb8d28b53d
2019-11-08 13:51:22 -08:00
Mike Ruberry
2f2a0d1607
Disables test_atomic_ops and testInputOrder ( #29145 )
...
Summary:
These tests have been flaky for some time, see:
- https://github.com/pytorch/pytorch/issues/28179
- https://github.com/pytorch/pytorch/issues/9064
This PR disables them. The actual tests were added/updated 2+ years ago. It's unclear who, if anyone, would own them now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29145
Differential Revision: D18327937
Pulled By: mruberry
fbshipit-source-id: d02731d662aff3545b581272e5ae8db4e3097d87
2019-11-05 16:53:53 -08:00
Huan Gui
8a2dcff189
Add cuda version for operators BatchSparseToDense and BatchDenseToSparse ( #29166 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29166
As titled
Test Plan:
unittest
buck test mode/dev-nosan caffe2/caffe2/python/operator_test:batch_sparse_to_dense_op_test
Reviewed By: xianjiec
Differential Revision: D18197966
fbshipit-source-id: 7486300c509dd552ddb7484c2d83099f62878278
2019-11-05 13:06:23 -08:00
Xinyi Zhang
5821b9bf0f
Remove error logging of high empty range ratio
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28854
Reviewed By: xianjiec
Differential Revision: D18206695
fbshipit-source-id: 4ce471f0236b2ceaf54ba1b1ce96e193feca720b
2019-10-30 12:55:25 -07:00
Huayu Li
793e2914e4
Support full id interations ( #28769 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28769
Support full id interaction.
Test Plan:
* unit-tests
* buck test caffe2/caffe2/python/operator_test:pack_ops_test --
* buck test caffe2/caffe2/fb/dper/layer_models/tests:sparse_nn_attention_test -- test_sparse_nn_full_id
* canary
* apply SUM + full id with max_length as 20 on SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID: f147253340 (v1: f146340704)
# of embeddings for this features is 20:
{F219139816}
The corresponding ops: two lookups, which is as expected.
```
op {
input: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_0/Repeat_0/sparse_lookup/w"
input: "feature_preproc/output_features:SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM:values"
input: "feature_preproc/output_features:SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM:lengths"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_0/Repeat_0/sparse_lookup/output"
name: ""
type: "SparseLengthsSum"
}
op {
input: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/sparse_lookup/w"
input: "feature_preproc/output_features:SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM:values"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/sparse_lookup/output"
name: ""
type: "Gather"
}
op {
input: "feature_preproc/output_features:SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM:lengths"
input: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/sparse_lookup/output"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/PackSegments/embedding_packed"
name: ""
type: "PackSegments"
arg {
name: "max_length"
i: 20
}
arg {
name: "pad_minf"
i: 0
}
}
op {
input: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/PackSegments/embedding_packed"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/Reshape/reshaped_record"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/Reshape/old_shape"
name: ""
type: "Reshape"
arg {
name: "shape"
ints: -1
ints: 1280
}
}
op {
input: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/Reshape/reshaped_record"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_0"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_1"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_2"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_3"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_4"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_5"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_6"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_7"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_8"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_9"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_10"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_11"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_12"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_13"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_14"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_15"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_16"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_17"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_18"
output: "nested/dot/SPARSE_AD_MEDIA_XRAY_V11_TOPIC_ID_AUTO_FIRST_X_AUTO_UNIGRAM/Pool_Option_1/Repeat_0/full_id/split/output_19"
name: ""
type: "Split"
arg {
name: "axis"
i: 1
}
}
```
Reviewed By: chonglinsun
Differential Revision: D18083520
fbshipit-source-id: f592fb7734dd4e3e712ba42dc0afcd0b32a4afa0
2019-10-29 14:56:18 -07:00
Xinyi Zhang
f5ea2ca34a
Reduce logging frequency for empty range tolarence
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28704
Reviewed By: xianjiec
Differential Revision: D18138828
fbshipit-source-id: 4f3c376502cb6e30b931217702c4ca537c9eb644
2019-10-28 09:52:17 -07:00
Xinyi Zhang
2f16284231
change empty range tolorrance logging
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28489
Differential Revision: D18067322
fbshipit-source-id: 2096d1cce820f4ebe28db0045a2ddacc022e07da
2019-10-23 09:39:39 -07:00
Xinyi Zhang
06bb74ce96
Tolerate small amount of embedding corruptions
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28371
Reviewed By: xianjiec
Differential Revision: D18031155
fbshipit-source-id: a51d2a62a919f032dc04372b30cf9071aa2dd629
2019-10-21 16:23:25 -07:00
Jiang Wu
29f56eb920
Revert D17937850: Tolerate small amount of embedding corruptions
...
Test Plan: revert-hammer
Differential Revision:
D17937850
Original commit changeset: e9c633768d98
fbshipit-source-id: 5c2c837c7867504392b19965d91a60cadd3b8101
2019-10-19 14:17:01 -07:00
Xinyi Zhang
ca6ba06f95
Tolerate small amount of embedding corruptions
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28299
Reviewed By: Wakeupbuddy
Differential Revision: D17937850
fbshipit-source-id: e9c633768d9819fd734ddd59017c33688ebbdcca
2019-10-18 14:59:06 -07:00
Simran Suresh Motwani
d63d7ab997
Expose PiecewiseLinearTransform to PyTorch
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/26903
Test Plan: Unit Test
Reviewed By: bddppq
Differential Revision: D17585637
fbshipit-source-id: fe669aaf3301d7efb5c28ec0097945d55a71773d
2019-09-27 12:49:04 -07:00
Jongsoo Park
8fb756d3b2
batch size 0 support in ChannelShuffle DNNLOWP op ( #26858 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26858
Handle batch size = 0 in ChannelShuffle operator
Test Plan: CI
Reviewed By: jianyuh
Differential Revision: D17591041
fbshipit-source-id: 63373aa752406c1f38401c3e93d8e1954ce7281e
2019-09-26 00:40:07 -07:00
Huan Gui
a8386d2a7d
fix composite learning rate ( #26227 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26227
In the previous implementation of composite lr, the lr_scale for each sub policy will be rewritten by the last lr_scale.
Due to another bug in unittest (where policy_lr_scale being the same for all sub policies), this bug was not detected by unittest...
Fix: add an additional field in CompositeLearningRateItem so that we store lr_scale values for all sub policies
If fix unittest, the error in previous implementation:
https://fburl.com/testinfra/ikdbnmey
With the fix,
https://fburl.com/testinfra/m694ehl1
Test Plan:
unittest
buck test caffe2/caffe2/python/operator_test:learning_rate_op_test -- test_composite_learning_rate_op
Reviewed By: chocjy, alex1o1o7cloud
Differential Revision: D17380363
fbshipit-source-id: 161e9cb71bb2ea7f0734a3361e270616057a08e4
2019-09-18 17:34:17 -07:00
Qi Zhou
076eaf4ccf
Exposing Fused8BitRowwiseQuantizedToFloat in PyTorch ( #26080 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26080
Will be used in c2 ctr_mbl_feed model to PyTorch conversion
Test Plan: Unit test
Reviewed By: yinghai
Differential Revision: D17337604
fbshipit-source-id: a90d9f5dc38301608d1562c6f2418e7f4616e753
2019-09-12 12:36:33 -07:00
Frank Jiang
3be1745b3c
Make SparseNormalize backwards compatible ( #25660 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25660
As title
Test Plan:
buck test caffe2/caffe2/python/operator_test:sparse_normalize_test
https://our.intern.facebook.com/intern/testinfra/testrun/5910974517813190
Reviewed By: boryiingsu
Differential Revision: D17187839
fbshipit-source-id: 1e5a6eaac0e825db4ae969540a1f689444070579
2019-09-05 15:14:21 -07:00
Jongsoo Park
8199bb3dd3
add options to flush cache in SLS benchmarks ( #25530 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25530
Add an option to flush cache for more consistent benchmarking.
Test Plan:
buck run mode/opt caffe2/caffe2/fb/python/benchmarks:sparse_lengths_sum_4bit_benchmark -- --flush-cache
buck run mode/opt caffe2/caffe2/python/operator_test:sparse_lengths_sum_benchmark -- --flush-cache
Reviewed By: hyuen
Differential Revision: D17148087
fbshipit-source-id: 7eb782986676620254c1619a9a48c656cb1a6856
2019-09-03 05:09:03 -07:00
Jongsoo Park
f1059d4e6a
format sparse_lengths_sum_benchmark ( #25529 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25529
To prepare D17148087
Test Plan: Just formatting
Reviewed By: hyuen
Differential Revision: D17148085
fbshipit-source-id: faff90ee7dfec543d47037d20ce00f251144bc06
2019-09-03 05:08:59 -07:00
Yanghan Wang
e34ef04301
register HeatmapMaxKeypoint with C10 ( #25191 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25191
registering as C10.
Test Plan: buck test mode/dev-nosan caffe2/caffe2/python/operator_test:heatmap_max_keypoint_op_test
Reviewed By: newstzpz
Differential Revision: D17056321
fbshipit-source-id: 989b72d7e3c9f23684b10d5fc9b98177ad4ee47b
2019-08-27 20:13:57 -07:00
Frank Jiang
d7c6debc14
Remove gradient value as input from SparseNormalize op ( #24357 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24357
SparseNormalize does not need to know the gradient value to the lookup table, only the indices of the embeddings that need to be updated. By removing this input, we allow SparseNormalize to be used alongside SparseAdagradFusion
Differential Revision: D16809919
fbshipit-source-id: cc19692ba4dea8854663ae1ed8cf9365e90c99bc
2019-08-19 14:47:09 -07:00
Yanghan Wang
3b22bbeb5b
enable "keeps" from BoxWithNMSLimit and caffe2_fastrcnn_outputs_inference
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/24451
Reviewed By: newstzpz
Differential Revision: D16850259
fbshipit-source-id: 22f69d71a558d63c32a27d271a7557fc35a55176
2019-08-19 10:54:22 -07:00
Yanghan Wang
ad64789a1e
add aligned option to RoIAlign
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23706
Reviewed By: ppwwyyxx
Differential Revision: D16615823
fbshipit-source-id: fd9152af8bc979cb04044413e66af349b032a99d
2019-08-07 21:22:33 -07:00
Shali Jiang
15d3f0242b
support Gather different indices for different examples in one batch ( #23813 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23813
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23285
for example:
Inputs:
data:
[[[2 4 2 0],
[0 1 2 0],
[1 1 0 0]],
[[3 4 1 3],
[0 3 2 2],
[4 1 0 4]]]
idx:
[[0 2],
[0 1]]
outputs:
[[[2 4 2 0],
[1 1 0 0]],
[[3 4 1 3],
[0 3 2 2]]]
data and idx must have the same outer dimension
call Gather or BatchGather with argument match_outer=True
Reviewed By: huayuli00
Differential Revision: D16652485
fbshipit-source-id: 9e144e97a8d6fceaf3b5714df1534338068f4a10
2019-08-07 21:14:30 -07:00
Michael Suo
a3c165f9d2
Revert D16452539: support Gather different indices for different examples in one batch
...
Differential Revision:
D16452539
Original commit changeset: 7229489f4a9c
fbshipit-source-id: 010c177e551cb81521d2af84ce951bf964cdab44
2019-08-05 10:22:01 -07:00
Shali Jiang
f87a4cc23f
support Gather different indices for different examples in one batch ( #23285 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23285
for example:
Inputs:
data:
[[[2 4 2 0],
[0 1 2 0],
[1 1 0 0]],
[[3 4 1 3],
[0 3 2 2],
[4 1 0 4]]]
idx:
[[0 2],
[0 1]]
outputs:
[[[2 4 2 0],
[1 1 0 0]],
[[3 4 1 3],
[0 3 2 2]]]
data and idx must have the same outer dimension
call Gather or BatchGather with argument match_outer=True
Reviewed By: huayuli00
Differential Revision: D16452539
fbshipit-source-id: 7229489f4a9c02ee9f3c6a8a24bcd02925d96e07
2019-08-04 21:17:49 -07:00
Jiexian Li
302adf1d20
add LambdaRank DCG Loss Option ( #23679 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23679
Full Canary: https://fburl.com/fblearner/sa1pkpya
Add LambdaRank DCG Loss Option
* when use_idcg_normalization == true, regular LambdaRank with NDCG loss
* when use_idcg_normalization == false, gradient and loss functions are not normalized by idcg.
Differential Revision: D16605459
fbshipit-source-id: a16f071e69516974e48d27bef4ca179019ca4ae7
2019-08-02 11:47:46 -07:00
Jiexian Li
fc6aec9491
format only change ( #23685 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23685
format only changes.
Differential Revision: D16607482
fbshipit-source-id: 572afb59c6ff9f8a8842ba044fed6c87f8506843
2019-08-02 11:47:42 -07:00
Levent Ertoz
6f01d13728
Implement dropout with replacement for id list features. ( #22880 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22880
Implement sparse dropout with replacement value.
Reviewed By: xianjiec
Differential Revision: D16267012
fbshipit-source-id: 8c4878230f61bb3ac333291e2c6aaf2fbdc5f9ce
2019-07-23 14:34:21 -07:00
Du Tran
d2ceab2766
update video input ( #22471 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22471
update C2 video input with latest augmentation
Reviewed By: HengCV
Differential Revision: D16096127
fbshipit-source-id: bb07394e211cd52b50005d801b6d03250248ea9e
2019-07-05 00:56:33 -07:00
Alyssa Wang
d9e15bccb0
Perform weight re-init for embedding table in sparse_lookup.py ( #22348 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22348
This is the last step of LRU hash eviction weight re-init. This diff checks if there's evicted values in sparse_lookup, if so call op created in D15709866 to re-init the values for indicies in evicted_values. Also created gradient op for the operator. The gradient op just passes the output gradient as input gradient.
Reviewed By: itomatik
Differential Revision: D16044736
fbshipit-source-id: 9afb85209b0de1038c5153bcb7dfc5f52e0b2abb
2019-07-03 10:33:40 -07:00
Duke Vijitbenjaronk
d684112ec9
Output sequence probability with CTC beam search, optional multiple output sequences ( #21927 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21927
Add `OUTPUT_PROB` output to CTCBeamSearchDecoderOp to return a probability for each sequence.
Add argument to output top-k instead of top-1 decoded sequences.
Reviewed By: SuperIRabbit
Differential Revision: D15797371
fbshipit-source-id: 737ca5cc4f90a0bcc3660ac9f58519a175977b69
2019-07-02 17:29:13 -07:00
Alyssa Wang
34f950c800
Create C2 operator to replace values in embedding table ( #22279 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22279
This new operator is used for embedding table weight re-init. After we get the evicted indices, they will be the rows need reseting in embedding table. Then we can create a 1d tensor with default values, and apply this operator to copy the tensor to all evicted rows in embedding table
Will add gradient op in next diff
Reviewed By: itomatik
Differential Revision: D15709866
fbshipit-source-id: 2297b70a7326591524d0be09c73a588da245cc08
2019-07-02 15:26:22 -07:00
Xiaomeng Yang
10e4137396
Optimize InstanceNormGradientOp ( #22288 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22288
Optimize InstanceNormGradientOp
Benchmarks:
CPU with [N, C, H, W] = [128, 256, 56, 56],
NCHW order: 616ms -> 128ms
NHWC order: 1612ms -> 174ms
GPU with [N, C, H, W] = [128, 256, 112, 112],
NCHW order: 6450ms -> 37ms
NHWC order: 1419ms -> 82ms
Reviewed By: houseroad
Differential Revision: D16023630
fbshipit-source-id: 5af9bf1103cde2fc2bcb5cd5a057d039732f052e
2019-07-01 15:10:17 -07:00
Xiaomeng Yang
29b53b0259
Fix bug in caffe2 transpose on GPU ( #22233 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22233
Fix bug in caffe2 transpose on GPU
Reviewed By: hl475
Differential Revision: D15994973
fbshipit-source-id: 542dc8757b51a6322fffa55826c1d4e32927398d
2019-06-26 11:33:25 -07:00
Sungmann Cho
f59581218f
Fix spelling errors ( #21665 )
...
Summary:
alloctor -> allocator
excutable -> executable
excution -> execution
foward -> forward
initiaize -> initialize
paralell -> parallel
preprocesor -> preprocessor
tranpose -> transpose
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21665
Differential Revision: D15806155
Pulled By: soumith
fbshipit-source-id: d92b21ec8650a2b32f05faf9af0b7d2b073e992c
2019-06-13 15:21:55 -07:00
David Zhang
696b2c89b4
Adding gradient to Boolean Mask operator ( #21423 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21423
- add gradient for boolean mask
- add test for gradient checking
Reviewed By: BIT-silence
Differential Revision: D15640036
fbshipit-source-id: 79f40c6901e805bf1b8e9b01b57903e30b00f654
2019-06-06 20:48:47 -07:00
David Zhang
cb2ec07fa2
ReshapeOp supports empty tensor ( #21230 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21230
tsia; we support empty tensor with this diff for reshape operator
Reviewed By: jerryzh168
Differential Revision: D15583356
fbshipit-source-id: 6d44c04e95ca3546509bfb12102e29c878f9a7c7
2019-06-06 15:02:11 -07:00
Hong Xu
da4f3629c5
Add missing shebangs to Python files with executable permissions.
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21305
Differential Revision: D15613078
Pulled By: ezyang
fbshipit-source-id: 1fedf4368d65db406b617a51402ee8a20968aff7
2019-06-06 10:53:40 -07:00
Yanghan Wang
81e70ffa19
fix bug of not using get_score_cls_index in BoxWithNMSLimitOp ( #20868 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20868
When `input_boxes_include_bg_cls` is false (which means `input_scores_fg_cls_starting_id` is 0), It doesn't map the class index of score currectly when sorting and limiting the detections over all classes after nms.
Reviewed By: newstzpz
Differential Revision: D15472706
fbshipit-source-id: dc1e808b63ad09fb4bd95acf866771bb3fa92d69
2019-05-24 22:31:01 -07:00
Yanghan Wang
371bd043d6
register ResizeNearestOp to C10
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20928
Reviewed By: smessmer
Differential Revision: D15499661
fbshipit-source-id: 5af24d5c9d7ff739b8355e19dfe66b496bc026a5
2019-05-24 14:39:11 -07:00
Kittipat Virochsiri
fd2aa93b37
Exposing LengthsSum/Mean/Max in pytorch ( #20802 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20802
Need this for sequence model
Reviewed By: dzhulgakov
Differential Revision: D15448529
fbshipit-source-id: cd5abe3b689fc0e02feff10faf8cd61c99369f4f
2019-05-22 13:55:19 -07:00
Huan Gui
fbdafdffa1
Move bucketize_op to open source
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19952
Reviewed By: houseroad
Differential Revision: D15145552
fbshipit-source-id: e0074c878a5c164324a9cc477783285dedffd188
2019-05-20 18:03:27 -07:00
Jongsoo Park
ea9c6e7581
eliminate FE_INVALID in unit test ( #20502 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20502
Following D15307410 removing more floating point exceptions in unit tests
Reviewed By: hx89
Differential Revision: D15340930
fbshipit-source-id: 269fc75e0800bc9d39126767a0f3ca15cd8b0cad
2019-05-16 21:55:28 -07:00
Yanghan Wang
373e6a78bf
make box plus one a legacy argument in detection ops
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20550
Reviewed By: newstzpz
Differential Revision: D15348610
fbshipit-source-id: 12b1e119e9bc9191ba9f2aa6d695ef215780c349
2019-05-16 18:17:12 -07:00
Yanghan Wang
61012080c8
split and register CollectAndDistributeFpnRpnProposals with C10
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20509
Reviewed By: newstzpz
Differential Revision: D15302181
fbshipit-source-id: 7d3b29b667cd900f2976101f35200e1ee20b0f64
2019-05-16 13:40:46 -07:00
Jongsoo Park
5f8e849d84
eliminate FE_INVALID in optimizer related operators and tests ( #20501 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20501
Fixing unit tests related to optimizer related operators and tests
Reviewed By: hx89
Differential Revision: D15307410
fbshipit-source-id: e5400c26e08f26191ee542fe6b02e0a69bc4e1ae
2019-05-16 08:23:46 -07:00
David Reiss
1891614aa5
Add GivenTensorInt16Fill ( #20515 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20515
Needed by the upcoming quantized version of GenerateProposals
Reviewed By: dzhulgakov
Differential Revision: D14430952
fbshipit-source-id: ea852f04cc4b070f8fbe7a1e6535bba4d5b230fd
2019-05-15 19:45:15 -07:00
Cheng Cheng
fd18b89c98
shape inference for learning rate op ( #20020 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20020
Add shape inference for LearningRate op. The output (lr) should have similar shape with input (iteration), but not the same type (float vs int).
Reviewed By: un-disclosed
Differential Revision: D15112300
fbshipit-source-id: 09969aefa15172a6f3c70cd9b2548e3020da5d7a
2019-05-14 23:34:32 -07:00
Bilge Acun
3ee97183b0
ScaleBlobs Operator ( #19660 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19660
Implementation of aggregated Scale operator.
The operator takes a list of tensors as an input and scales all of them them with the argument float value.
The tensor sizes can be different, therefore bookkeeping of the sizes and pointers to the tensors are
necessary for the GPU version of the kernel.
Reviewed By: BIT-silence
Differential Revision: D14984233
fbshipit-source-id: 37cc97159a4f2c38cd6fff4f5710ab7d3a773611
2019-05-08 17:57:33 -07:00
Jongsoo Park
42e9a619b3
add decay parameter in ref_adagrad ( #15329 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15329
Add decay parameter to match with C++ Adagrad implementation.
Reviewed By: chocjy
Differential Revision: D13300991
fbshipit-source-id: db734df0202d8f5fd156f2742207d0b5a3aa7348
2019-05-07 18:58:58 -07:00