mirror of
https://github.com/zebrajr/pytorch.git
synced 2026-01-15 12:15:51 +00:00
Document limitations of weights_only in SECURITY.md and torch.load doc (#165645)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165645 Approved by: https://github.com/albanD
This commit is contained in:
committed by
PyTorch MergeBot
parent
3f69b4d9b4
commit
6ecd6b23b6
@@ -31,9 +31,9 @@ Be careful when running untrusted models. This classification includes models cr
|
||||
|
||||
**Prefer to execute untrusted models within a secure, isolated environment such as a sandbox** (e.g., containers, virtual machines). This helps protect your system from potentially malicious code. You can find further details and instructions in [this page](https://developers.google.com/code-sandboxing).
|
||||
|
||||
**Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) with `weights_only=True` is also secure to our knowledge even though it offers significantly larger surface of attack. Loading un-trusted checkpoint with `weights_only=False` MUST never be done.
|
||||
|
||||
**Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) has a significantly larger surface of attack but is more flexible in what it can serialize. See the documentation for more details.
|
||||
|
||||
Even for more secure serialization formats, unexpected inputs to the downstream system can cause diverse security threats (e.g. denial of service, out of bound reads/writes) and thus we recommend extensive validation of any untrusted inputs.
|
||||
|
||||
Important Note: The trustworthiness of a model is not binary. You must always determine the proper level of caution depending on the specific model and how it matches your use case and risk tolerance.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user