Files
pytorch/test/cpp/api/tensor.cpp

572 lines
19 KiB
C++
Raw Normal View History

#include <gtest/gtest.h>
#include <test/cpp/api/support.h>
Create ATen tensors via TensorOptions (#7869) * Created TensorOptions Storing the type in TensorOptions to solve the Variable problem Created convenience creation functions for TensorOptions and added tests Converted zeros to TensorOptions Converted rand to TensorOptions Fix codegen for TensorOptions and multiple arguments Put TensorOptions convenience functions into torch namespace too All factory functions except *_like support TensorOptions Integrated with recent JIT changes Support *_like functions Fix in place modification Some cleanups and fixes Support sparse_coo_tensor Fix bug in Type.cpp Fix .empty calls in C++ API Fix bug in Type.cpp Trying to fix device placement Make AutoGPU CPU compatible Remove some auto_gpu.h uses Fixing some headers Fix some remaining CUDA/AutoGPU issues Fix some AutoGPU uses Fixes to dispatch_tensor_conversion Reset version of new variables to zero Implemented parsing device strings Random fixes to tests Self review cleanups flake8 Undo changes to variable.{h,cpp} because they fail on gcc7.2 Add [cuda] tag to tensor_options_cuda.cpp Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks Fix linker error in AutoGPU.cpp Fix bad merge conflict in native_functions.yaml Fixed caffe2/contrib/aten Fix new window functions added to TensorFactories.cpp * Removed torch::TensorOptions Added code to generate wrapper functions for factory methods Add implicit constructor from Backend to TensorOptions Remove Var() from C++ API and use torch:: functions Use torch:: functions more subtly in C++ API Make AutoGPU::set_device more exception safe Check status directly in DynamicCUDAHooksInterface Rename AutoGPU to DeviceGuard Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad remove python_default_init: self.type() Add back original factory functions, but with deprecation warnings Disable DeviceGuard for a couple functions in ATen Remove print statement Fix DeviceGuard construction from undefined tensor Fixing CUDA device compiler issues Moved as many methods as possible into header files Dont generate python functions for deprecated factories Remove merge conflict artefact Fix tensor_options_cuda.cpp Fix set_requires_grad not being checked Fix tensor_new.h TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac Fix bug in DeviceGuard.h Missing includes TEMPORARILY moving a few more methods into .cpp to see if it fixes windows Fixing linker errors * Fix up SummaryOps to use new factories Undo device agnostic behavior of DeviceGuard Use -1 instead of optional for default device index Also move DeviceGuard methods into header Fixes around device index after optional -> int32_t switch Fix use of DeviceGuard in new_with_tensor_copy Fix tensor_options.cpp * Fix Type::copy( * Remove test_non_float_params from ONNX tests * Set requires_grad=False in ONNX tests that use ints * Put layout/dtype/device on Tensor * Post merge fixes * Change behavior of DeviceGuard to match AutoGPU * Fix C++ API integration tests * Fix flip functions
2018-06-16 00:40:35 -07:00
#include <torch/types.h>
Create ATen tensors via TensorOptions (#7869) * Created TensorOptions Storing the type in TensorOptions to solve the Variable problem Created convenience creation functions for TensorOptions and added tests Converted zeros to TensorOptions Converted rand to TensorOptions Fix codegen for TensorOptions and multiple arguments Put TensorOptions convenience functions into torch namespace too All factory functions except *_like support TensorOptions Integrated with recent JIT changes Support *_like functions Fix in place modification Some cleanups and fixes Support sparse_coo_tensor Fix bug in Type.cpp Fix .empty calls in C++ API Fix bug in Type.cpp Trying to fix device placement Make AutoGPU CPU compatible Remove some auto_gpu.h uses Fixing some headers Fix some remaining CUDA/AutoGPU issues Fix some AutoGPU uses Fixes to dispatch_tensor_conversion Reset version of new variables to zero Implemented parsing device strings Random fixes to tests Self review cleanups flake8 Undo changes to variable.{h,cpp} because they fail on gcc7.2 Add [cuda] tag to tensor_options_cuda.cpp Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks Fix linker error in AutoGPU.cpp Fix bad merge conflict in native_functions.yaml Fixed caffe2/contrib/aten Fix new window functions added to TensorFactories.cpp * Removed torch::TensorOptions Added code to generate wrapper functions for factory methods Add implicit constructor from Backend to TensorOptions Remove Var() from C++ API and use torch:: functions Use torch:: functions more subtly in C++ API Make AutoGPU::set_device more exception safe Check status directly in DynamicCUDAHooksInterface Rename AutoGPU to DeviceGuard Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad remove python_default_init: self.type() Add back original factory functions, but with deprecation warnings Disable DeviceGuard for a couple functions in ATen Remove print statement Fix DeviceGuard construction from undefined tensor Fixing CUDA device compiler issues Moved as many methods as possible into header files Dont generate python functions for deprecated factories Remove merge conflict artefact Fix tensor_options_cuda.cpp Fix set_requires_grad not being checked Fix tensor_new.h TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac Fix bug in DeviceGuard.h Missing includes TEMPORARILY moving a few more methods into .cpp to see if it fixes windows Fixing linker errors * Fix up SummaryOps to use new factories Undo device agnostic behavior of DeviceGuard Use -1 instead of optional for default device index Also move DeviceGuard methods into header Fixes around device index after optional -> int32_t switch Fix use of DeviceGuard in new_with_tensor_copy Fix tensor_options.cpp * Fix Type::copy( * Remove test_non_float_params from ONNX tests * Set requires_grad=False in ONNX tests that use ints * Put layout/dtype/device on Tensor * Post merge fixes * Change behavior of DeviceGuard to match AutoGPU * Fix C++ API integration tests * Fix flip functions
2018-06-16 00:40:35 -07:00
#include <ATen/ATen.h>
2018-06-20 11:44:21 -07:00
#include <cmath>
#include <cstddef>
#include <vector>
2018-06-20 11:44:21 -07:00
#include <test/cpp/common/support.h>
2018-06-20 11:44:21 -07:00
template <typename T>
bool exactly_equal(at::Tensor left, T right) {
return left.item<T>() == right;
2018-06-20 11:44:21 -07:00
}
template <typename T>
bool almost_equal(at::Tensor left, T right, T tolerance = 1e-4) {
return std::abs(left.item<T>() - right) < tolerance;
2018-06-20 11:44:21 -07:00
}
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
ASSERT_TRUE( \
tensor.device().type() == at::Device((device_), (index_)).type()); \
ASSERT_TRUE( \
tensor.device().index() == at::Device((device_), (index_)).index()); \
ASSERT_EQ(tensor.dtype(), (type_)); \
ASSERT_TRUE(tensor.layout() == (layout_))
TEST(TensorTest, ToDtype) {
auto tensor = at::empty({3, 4});
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
tensor = tensor.to(at::kInt);
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
tensor = tensor.to(at::kChar);
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kChar, at::kStrided);
tensor = tensor.to(at::kDouble);
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
tensor = tensor.to(at::TensorOptions(at::kInt));
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
tensor = tensor.to(at::TensorOptions(at::kChar));
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kChar, at::kStrided);
tensor = tensor.to(at::TensorOptions(at::kDouble));
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
}
TEST(TensorTest, ToTensorAndTensorAttributes) {
auto tensor = at::empty({3, 4});
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
auto other = at::empty({3, 4}, at::kInt);
tensor = tensor.to(other);
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
other = at::empty({3, 4}, at::kDouble);
tensor = tensor.to(other.dtype());
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
tensor = tensor.to(other.device());
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
other = at::empty({3, 4}, at::kLong);
tensor = tensor.to(other.device(), other.dtype());
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kLong, at::kStrided);
other = at::empty({3, 4}, at::kInt);
tensor = tensor.to(other.options());
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
}
// Not currently supported.
// TEST(TensorTest, ToLayout) {
// auto tensor = at::empty({3, 4});
// REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
//
// tensor = tensor.to(at::kSparse);
// REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kSparse);
//
// tensor = tensor.to(at::kStrided);
// REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
// }
TEST(TensorTest, ToOptionsWithRequiresGrad) {
{
// Respects requires_grad
auto tensor = torch::empty({3, 4}, at::requires_grad());
ASSERT_TRUE(tensor.requires_grad());
tensor = tensor.to(at::kDouble);
ASSERT_TRUE(tensor.requires_grad());
// Throws if requires_grad is set in TensorOptions
ASSERT_THROW(
tensor.to(at::TensorOptions().requires_grad(true)), c10::Error);
ASSERT_THROW(
tensor.to(at::TensorOptions().requires_grad(false)), c10::Error);
}
{
auto tensor = torch::empty({3, 4});
ASSERT_FALSE(tensor.requires_grad());
// Respects requires_grad
tensor = tensor.to(at::kDouble);
ASSERT_FALSE(tensor.requires_grad());
// Throws if requires_grad is set in TensorOptions
ASSERT_THROW(
tensor.to(at::TensorOptions().requires_grad(true)), c10::Error);
ASSERT_THROW(
tensor.to(at::TensorOptions().requires_grad(false)), c10::Error);
Create ATen tensors via TensorOptions (#7869) * Created TensorOptions Storing the type in TensorOptions to solve the Variable problem Created convenience creation functions for TensorOptions and added tests Converted zeros to TensorOptions Converted rand to TensorOptions Fix codegen for TensorOptions and multiple arguments Put TensorOptions convenience functions into torch namespace too All factory functions except *_like support TensorOptions Integrated with recent JIT changes Support *_like functions Fix in place modification Some cleanups and fixes Support sparse_coo_tensor Fix bug in Type.cpp Fix .empty calls in C++ API Fix bug in Type.cpp Trying to fix device placement Make AutoGPU CPU compatible Remove some auto_gpu.h uses Fixing some headers Fix some remaining CUDA/AutoGPU issues Fix some AutoGPU uses Fixes to dispatch_tensor_conversion Reset version of new variables to zero Implemented parsing device strings Random fixes to tests Self review cleanups flake8 Undo changes to variable.{h,cpp} because they fail on gcc7.2 Add [cuda] tag to tensor_options_cuda.cpp Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks Fix linker error in AutoGPU.cpp Fix bad merge conflict in native_functions.yaml Fixed caffe2/contrib/aten Fix new window functions added to TensorFactories.cpp * Removed torch::TensorOptions Added code to generate wrapper functions for factory methods Add implicit constructor from Backend to TensorOptions Remove Var() from C++ API and use torch:: functions Use torch:: functions more subtly in C++ API Make AutoGPU::set_device more exception safe Check status directly in DynamicCUDAHooksInterface Rename AutoGPU to DeviceGuard Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad remove python_default_init: self.type() Add back original factory functions, but with deprecation warnings Disable DeviceGuard for a couple functions in ATen Remove print statement Fix DeviceGuard construction from undefined tensor Fixing CUDA device compiler issues Moved as many methods as possible into header files Dont generate python functions for deprecated factories Remove merge conflict artefact Fix tensor_options_cuda.cpp Fix set_requires_grad not being checked Fix tensor_new.h TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac Fix bug in DeviceGuard.h Missing includes TEMPORARILY moving a few more methods into .cpp to see if it fixes windows Fixing linker errors * Fix up SummaryOps to use new factories Undo device agnostic behavior of DeviceGuard Use -1 instead of optional for default device index Also move DeviceGuard methods into header Fixes around device index after optional -> int32_t switch Fix use of DeviceGuard in new_with_tensor_copy Fix tensor_options.cpp * Fix Type::copy( * Remove test_non_float_params from ONNX tests * Set requires_grad=False in ONNX tests that use ints * Put layout/dtype/device on Tensor * Post merge fixes * Change behavior of DeviceGuard to match AutoGPU * Fix C++ API integration tests * Fix flip functions
2018-06-16 00:40:35 -07:00
}
}
TEST(TensorTest, ToDoesNotCopyWhenOptionsAreAllTheSame) {
{
auto tensor = at::empty({3, 4}, at::kFloat);
auto hopefully_not_copy = tensor.to(at::kFloat);
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
}
{
auto tensor = at::empty({3, 4}, at::kFloat);
auto hopefully_not_copy = tensor.to(tensor.options());
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
}
{
auto tensor = at::empty({3, 4}, at::kFloat);
auto hopefully_not_copy = tensor.to(tensor.dtype());
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
}
{
auto tensor = at::empty({3, 4}, at::kFloat);
auto hopefully_not_copy = tensor.to(tensor.device());
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
}
{
auto tensor = at::empty({3, 4}, at::kFloat);
auto hopefully_not_copy = tensor.to(tensor);
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
}
}
2018-06-20 11:44:21 -07:00
TEST(TensorTest, ContainsCorrectValueForSingleValue) {
2018-06-20 11:44:21 -07:00
auto tensor = at::tensor(123);
ASSERT_EQ(tensor.numel(), 1);
ASSERT_EQ(tensor.dtype(), at::kInt);
Remove caffe2::Tensor::capacity_nbytes, at::Tensor::to##name##Data, (#11876) Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11876 Modern C++ api instead of macros, item() is aligned with Python frontend. caffe2::Tensor::capacity_nbytes is effecitvely unused and confusing w.r.t. caffe2::Tensor::nbytes(). codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCComplexDouble "item<std::complex<double>>" codemod -d tc --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>" Reviewed By: ezyang Differential Revision: D9948572 fbshipit-source-id: 70c9f5390d92b82c85fdd5f8a5aebca338ab413c
2018-09-24 10:39:10 -07:00
ASSERT_EQ(tensor[0].item<int32_t>(), 123);
2018-06-20 11:44:21 -07:00
tensor = at::tensor(123.456f);
ASSERT_EQ(tensor.numel(), 1);
ASSERT_EQ(tensor.dtype(), at::kFloat);
ASSERT_TRUE(almost_equal(tensor[0], 123.456f));
2018-06-20 11:44:21 -07:00
tensor = at::tensor(123.456);
ASSERT_EQ(tensor.numel(), 1);
ASSERT_EQ(tensor.dtype(), at::kDouble);
ASSERT_TRUE(almost_equal(tensor[0], 123.456));
2018-06-20 11:44:21 -07:00
}
TEST(TensorTest, ContainsCorrectValuesForManyValues) {
2018-06-20 11:44:21 -07:00
auto tensor = at::tensor({1, 2, 3});
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kInt);
ASSERT_TRUE(exactly_equal(tensor[0], 1));
ASSERT_TRUE(exactly_equal(tensor[1], 2));
ASSERT_TRUE(exactly_equal(tensor[2], 3));
2018-06-20 11:44:21 -07:00
Fix issues in torch::tensor constructor (#26890) Summary: This PR contains the following: 1. Fix ambiguous overload problem when `torch::tensor({{1, 2}})` is used: ``` ../test/cpp/api/tensor.cpp: In member function ‘virtual void TensorTest_MultidimTensorCtor_Test::TestBody()’: ../test/cpp/api/tensor.cpp:202:41: error: call of overloaded ‘tensor(<brace-enclosed initializer list>)’ is ambiguous auto tensor = torch::tensor({{1, 2}}); ^ In file included from ../caffe2/../torch/csrc/api/include/torch/types.h:7:0, from ../caffe2/../torch/csrc/api/include/torch/detail/static.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/pimpl.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/module.h:3, from ../caffe2/../torch/csrc/api/include/torch/nn/cloneable.h:3, from ../test/cpp/api/support.h:7, from ../test/cpp/api/tensor.cpp:2: ../torch/csrc/autograd/generated/variable_factories.h:177:644: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<unsigned char>) ../torch/csrc/autograd/generated/variable_factories.h:177:1603: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<signed char>) ../torch/csrc/autograd/generated/variable_factories.h:177:2562: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<short int>) ../torch/csrc/autograd/generated/variable_factories.h:177:3507: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<int>) ../torch/csrc/autograd/generated/variable_factories.h:177:4450: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<long int>) ../torch/csrc/autograd/generated/variable_factories.h:177:5404: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<float>) ../torch/csrc/autograd/generated/variable_factories.h:177:6354: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<double>) ../torch/csrc/autograd/generated/variable_factories.h:177:7630: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<bool>) ../torch/csrc/autograd/generated/variable_factories.h:177:9224: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<c10::Half>) ../torch/csrc/autograd/generated/variable_factories.h:177:10838: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<c10::BFloat16>) In file included from ../caffe2/../torch/csrc/api/include/torch/types.h:7:0, from ../caffe2/../torch/csrc/api/include/torch/detail/static.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/pimpl.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/module.h:3, from ../caffe2/../torch/csrc/api/include/torch/nn/cloneable.h:3, from ../test/cpp/api/support.h:7, from ../test/cpp/api/tensor.cpp:2: ../torch/csrc/autograd/generated/variable_factories.h:193:19: note: candidate: at::Tensor torch::tensor(torch::detail::InitListTensor) inline at::Tensor tensor(detail::InitListTensor list_init_tensor) { ^ ``` After this PR, the multidim tensor constructor `torch::tensor(...)` should be ready for general use. Pull Request resolved: https://github.com/pytorch/pytorch/pull/26890 Differential Revision: D17632608 Pulled By: yf225 fbshipit-source-id: 2e653d4ad85729d052328a124004d64994bec782
2019-09-27 12:05:57 -07:00
tensor = at::tensor(at::ArrayRef<int>({1, 2, 3}));
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kInt);
ASSERT_TRUE(exactly_equal(tensor[0], 1));
ASSERT_TRUE(exactly_equal(tensor[1], 2));
ASSERT_TRUE(exactly_equal(tensor[2], 3));
2018-06-20 11:44:21 -07:00
tensor = at::tensor({1.5, 2.25, 3.125});
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kDouble);
ASSERT_TRUE(almost_equal(tensor[0], 1.5));
ASSERT_TRUE(almost_equal(tensor[1], 2.25));
ASSERT_TRUE(almost_equal(tensor[2], 3.125));
Fix issues in torch::tensor constructor (#26890) Summary: This PR contains the following: 1. Fix ambiguous overload problem when `torch::tensor({{1, 2}})` is used: ``` ../test/cpp/api/tensor.cpp: In member function ‘virtual void TensorTest_MultidimTensorCtor_Test::TestBody()’: ../test/cpp/api/tensor.cpp:202:41: error: call of overloaded ‘tensor(<brace-enclosed initializer list>)’ is ambiguous auto tensor = torch::tensor({{1, 2}}); ^ In file included from ../caffe2/../torch/csrc/api/include/torch/types.h:7:0, from ../caffe2/../torch/csrc/api/include/torch/detail/static.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/pimpl.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/module.h:3, from ../caffe2/../torch/csrc/api/include/torch/nn/cloneable.h:3, from ../test/cpp/api/support.h:7, from ../test/cpp/api/tensor.cpp:2: ../torch/csrc/autograd/generated/variable_factories.h:177:644: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<unsigned char>) ../torch/csrc/autograd/generated/variable_factories.h:177:1603: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<signed char>) ../torch/csrc/autograd/generated/variable_factories.h:177:2562: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<short int>) ../torch/csrc/autograd/generated/variable_factories.h:177:3507: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<int>) ../torch/csrc/autograd/generated/variable_factories.h:177:4450: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<long int>) ../torch/csrc/autograd/generated/variable_factories.h:177:5404: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<float>) ../torch/csrc/autograd/generated/variable_factories.h:177:6354: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<double>) ../torch/csrc/autograd/generated/variable_factories.h:177:7630: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<bool>) ../torch/csrc/autograd/generated/variable_factories.h:177:9224: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<c10::Half>) ../torch/csrc/autograd/generated/variable_factories.h:177:10838: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<c10::BFloat16>) In file included from ../caffe2/../torch/csrc/api/include/torch/types.h:7:0, from ../caffe2/../torch/csrc/api/include/torch/detail/static.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/pimpl.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/module.h:3, from ../caffe2/../torch/csrc/api/include/torch/nn/cloneable.h:3, from ../test/cpp/api/support.h:7, from ../test/cpp/api/tensor.cpp:2: ../torch/csrc/autograd/generated/variable_factories.h:193:19: note: candidate: at::Tensor torch::tensor(torch::detail::InitListTensor) inline at::Tensor tensor(detail::InitListTensor list_init_tensor) { ^ ``` After this PR, the multidim tensor constructor `torch::tensor(...)` should be ready for general use. Pull Request resolved: https://github.com/pytorch/pytorch/pull/26890 Differential Revision: D17632608 Pulled By: yf225 fbshipit-source-id: 2e653d4ad85729d052328a124004d64994bec782
2019-09-27 12:05:57 -07:00
tensor = at::tensor(at::ArrayRef<double>({1.5, 2.25, 3.125}));
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kDouble);
ASSERT_TRUE(almost_equal(tensor[0], 1.5));
ASSERT_TRUE(almost_equal(tensor[1], 2.25));
ASSERT_TRUE(almost_equal(tensor[2], 3.125));
2018-06-20 11:44:21 -07:00
}
TEST(TensorTest, ContainsCorrectValuesForManyValuesVariable) {
auto tensor = torch::tensor({1, 2, 3});
ASSERT_TRUE(tensor.is_variable());
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kInt);
ASSERT_TRUE(exactly_equal(tensor[0], 1));
ASSERT_TRUE(exactly_equal(tensor[1], 2));
ASSERT_TRUE(exactly_equal(tensor[2], 3));
Fix issues in torch::tensor constructor (#26890) Summary: This PR contains the following: 1. Fix ambiguous overload problem when `torch::tensor({{1, 2}})` is used: ``` ../test/cpp/api/tensor.cpp: In member function ‘virtual void TensorTest_MultidimTensorCtor_Test::TestBody()’: ../test/cpp/api/tensor.cpp:202:41: error: call of overloaded ‘tensor(<brace-enclosed initializer list>)’ is ambiguous auto tensor = torch::tensor({{1, 2}}); ^ In file included from ../caffe2/../torch/csrc/api/include/torch/types.h:7:0, from ../caffe2/../torch/csrc/api/include/torch/detail/static.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/pimpl.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/module.h:3, from ../caffe2/../torch/csrc/api/include/torch/nn/cloneable.h:3, from ../test/cpp/api/support.h:7, from ../test/cpp/api/tensor.cpp:2: ../torch/csrc/autograd/generated/variable_factories.h:177:644: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<unsigned char>) ../torch/csrc/autograd/generated/variable_factories.h:177:1603: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<signed char>) ../torch/csrc/autograd/generated/variable_factories.h:177:2562: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<short int>) ../torch/csrc/autograd/generated/variable_factories.h:177:3507: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<int>) ../torch/csrc/autograd/generated/variable_factories.h:177:4450: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<long int>) ../torch/csrc/autograd/generated/variable_factories.h:177:5404: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<float>) ../torch/csrc/autograd/generated/variable_factories.h:177:6354: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<double>) ../torch/csrc/autograd/generated/variable_factories.h:177:7630: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<bool>) ../torch/csrc/autograd/generated/variable_factories.h:177:9224: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<c10::Half>) ../torch/csrc/autograd/generated/variable_factories.h:177:10838: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<c10::BFloat16>) In file included from ../caffe2/../torch/csrc/api/include/torch/types.h:7:0, from ../caffe2/../torch/csrc/api/include/torch/detail/static.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/pimpl.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/module.h:3, from ../caffe2/../torch/csrc/api/include/torch/nn/cloneable.h:3, from ../test/cpp/api/support.h:7, from ../test/cpp/api/tensor.cpp:2: ../torch/csrc/autograd/generated/variable_factories.h:193:19: note: candidate: at::Tensor torch::tensor(torch::detail::InitListTensor) inline at::Tensor tensor(detail::InitListTensor list_init_tensor) { ^ ``` After this PR, the multidim tensor constructor `torch::tensor(...)` should be ready for general use. Pull Request resolved: https://github.com/pytorch/pytorch/pull/26890 Differential Revision: D17632608 Pulled By: yf225 fbshipit-source-id: 2e653d4ad85729d052328a124004d64994bec782
2019-09-27 12:05:57 -07:00
tensor = torch::tensor(at::ArrayRef<int>({1, 2, 3}));
ASSERT_TRUE(tensor.is_variable());
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kInt);
ASSERT_TRUE(exactly_equal(tensor[0], 1));
ASSERT_TRUE(exactly_equal(tensor[1], 2));
ASSERT_TRUE(exactly_equal(tensor[2], 3));
tensor = torch::tensor({1.5, 2.25, 3.125});
ASSERT_TRUE(tensor.is_variable());
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kDouble);
ASSERT_TRUE(almost_equal(tensor[0], 1.5));
ASSERT_TRUE(almost_equal(tensor[1], 2.25));
ASSERT_TRUE(almost_equal(tensor[2], 3.125));
Fix issues in torch::tensor constructor (#26890) Summary: This PR contains the following: 1. Fix ambiguous overload problem when `torch::tensor({{1, 2}})` is used: ``` ../test/cpp/api/tensor.cpp: In member function ‘virtual void TensorTest_MultidimTensorCtor_Test::TestBody()’: ../test/cpp/api/tensor.cpp:202:41: error: call of overloaded ‘tensor(<brace-enclosed initializer list>)’ is ambiguous auto tensor = torch::tensor({{1, 2}}); ^ In file included from ../caffe2/../torch/csrc/api/include/torch/types.h:7:0, from ../caffe2/../torch/csrc/api/include/torch/detail/static.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/pimpl.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/module.h:3, from ../caffe2/../torch/csrc/api/include/torch/nn/cloneable.h:3, from ../test/cpp/api/support.h:7, from ../test/cpp/api/tensor.cpp:2: ../torch/csrc/autograd/generated/variable_factories.h:177:644: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<unsigned char>) ../torch/csrc/autograd/generated/variable_factories.h:177:1603: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<signed char>) ../torch/csrc/autograd/generated/variable_factories.h:177:2562: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<short int>) ../torch/csrc/autograd/generated/variable_factories.h:177:3507: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<int>) ../torch/csrc/autograd/generated/variable_factories.h:177:4450: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<long int>) ../torch/csrc/autograd/generated/variable_factories.h:177:5404: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<float>) ../torch/csrc/autograd/generated/variable_factories.h:177:6354: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<double>) ../torch/csrc/autograd/generated/variable_factories.h:177:7630: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<bool>) ../torch/csrc/autograd/generated/variable_factories.h:177:9224: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<c10::Half>) ../torch/csrc/autograd/generated/variable_factories.h:177:10838: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<c10::BFloat16>) In file included from ../caffe2/../torch/csrc/api/include/torch/types.h:7:0, from ../caffe2/../torch/csrc/api/include/torch/detail/static.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/pimpl.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/module.h:3, from ../caffe2/../torch/csrc/api/include/torch/nn/cloneable.h:3, from ../test/cpp/api/support.h:7, from ../test/cpp/api/tensor.cpp:2: ../torch/csrc/autograd/generated/variable_factories.h:193:19: note: candidate: at::Tensor torch::tensor(torch::detail::InitListTensor) inline at::Tensor tensor(detail::InitListTensor list_init_tensor) { ^ ``` After this PR, the multidim tensor constructor `torch::tensor(...)` should be ready for general use. Pull Request resolved: https://github.com/pytorch/pytorch/pull/26890 Differential Revision: D17632608 Pulled By: yf225 fbshipit-source-id: 2e653d4ad85729d052328a124004d64994bec782
2019-09-27 12:05:57 -07:00
tensor = torch::tensor(at::ArrayRef<double>({1.5, 2.25, 3.125}));
ASSERT_TRUE(tensor.is_variable());
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kDouble);
ASSERT_TRUE(almost_equal(tensor[0], 1.5));
ASSERT_TRUE(almost_equal(tensor[1], 2.25));
ASSERT_TRUE(almost_equal(tensor[2], 3.125));
}
TEST(TensorTest, MultidimTensorCtor) {
Fix issues in torch::tensor constructor (#26890) Summary: This PR contains the following: 1. Fix ambiguous overload problem when `torch::tensor({{1, 2}})` is used: ``` ../test/cpp/api/tensor.cpp: In member function ‘virtual void TensorTest_MultidimTensorCtor_Test::TestBody()’: ../test/cpp/api/tensor.cpp:202:41: error: call of overloaded ‘tensor(<brace-enclosed initializer list>)’ is ambiguous auto tensor = torch::tensor({{1, 2}}); ^ In file included from ../caffe2/../torch/csrc/api/include/torch/types.h:7:0, from ../caffe2/../torch/csrc/api/include/torch/detail/static.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/pimpl.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/module.h:3, from ../caffe2/../torch/csrc/api/include/torch/nn/cloneable.h:3, from ../test/cpp/api/support.h:7, from ../test/cpp/api/tensor.cpp:2: ../torch/csrc/autograd/generated/variable_factories.h:177:644: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<unsigned char>) ../torch/csrc/autograd/generated/variable_factories.h:177:1603: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<signed char>) ../torch/csrc/autograd/generated/variable_factories.h:177:2562: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<short int>) ../torch/csrc/autograd/generated/variable_factories.h:177:3507: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<int>) ../torch/csrc/autograd/generated/variable_factories.h:177:4450: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<long int>) ../torch/csrc/autograd/generated/variable_factories.h:177:5404: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<float>) ../torch/csrc/autograd/generated/variable_factories.h:177:6354: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<double>) ../torch/csrc/autograd/generated/variable_factories.h:177:7630: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<bool>) ../torch/csrc/autograd/generated/variable_factories.h:177:9224: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<c10::Half>) ../torch/csrc/autograd/generated/variable_factories.h:177:10838: note: candidate: at::Tensor torch::tensor(c10::ArrayRef<c10::BFloat16>) In file included from ../caffe2/../torch/csrc/api/include/torch/types.h:7:0, from ../caffe2/../torch/csrc/api/include/torch/detail/static.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/pimpl.h:4, from ../caffe2/../torch/csrc/api/include/torch/nn/module.h:3, from ../caffe2/../torch/csrc/api/include/torch/nn/cloneable.h:3, from ../test/cpp/api/support.h:7, from ../test/cpp/api/tensor.cpp:2: ../torch/csrc/autograd/generated/variable_factories.h:193:19: note: candidate: at::Tensor torch::tensor(torch::detail::InitListTensor) inline at::Tensor tensor(detail::InitListTensor list_init_tensor) { ^ ``` After this PR, the multidim tensor constructor `torch::tensor(...)` should be ready for general use. Pull Request resolved: https://github.com/pytorch/pytorch/pull/26890 Differential Revision: D17632608 Pulled By: yf225 fbshipit-source-id: 2e653d4ad85729d052328a124004d64994bec782
2019-09-27 12:05:57 -07:00
{
auto tensor = torch::tensor({{1, 2}});
ASSERT_EQ(tensor.dtype(), torch::kInt);
ASSERT_EQ(tensor.sizes(), torch::IntArrayRef({1, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 3, torch::kInt).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{1.0, 2.0}});
ASSERT_EQ(tensor.dtype(), torch::kDouble);
ASSERT_EQ(tensor.sizes(), torch::IntArrayRef({1, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 3, torch::kDouble).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{1, 2}}, torch::dtype(torch::kInt));
ASSERT_EQ(tensor.dtype(), torch::kInt);
ASSERT_EQ(tensor.sizes(), torch::IntArrayRef({1, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 3, torch::kInt).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{{1, 2}}});
ASSERT_EQ(tensor.dtype(), torch::kInt);
ASSERT_EQ(tensor.sizes(), torch::IntArrayRef({1, 1, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 3, torch::kInt).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{1, 2}, {3, 4}});
ASSERT_EQ(tensor.dtype(), torch::kInt);
ASSERT_EQ(tensor.sizes(), torch::IntArrayRef({2, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 5, torch::kInt).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{1, 2}, {3, 4}}, torch::dtype(torch::kFloat).requires_grad(true));
ASSERT_EQ(tensor.dtype(), torch::kFloat);
ASSERT_EQ(tensor.sizes(), torch::IntArrayRef({2, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 5, torch::kFloat).view(tensor.sizes())));
ASSERT_TRUE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{{{{{{{1.0, 2.0, 3.0}}}}}, {{{{{4.0, 5.0, 6.0}}}}}, {{{{{7.0, 8.0, 9.0}}}}}}}});
ASSERT_EQ(tensor.dtype(), torch::kDouble);
ASSERT_EQ(tensor.sizes(), torch::IntArrayRef({1, 1, 3, 1, 1, 1, 1, 3}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 10, torch::kDouble).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
ASSERT_THROWS_WITH(torch::tensor({{{2, 3, 4}, {{5, 6}, {7}}}}),
"Expected all sub-lists to have sizes: 2 (e.g. {5, 6}), but got sub-list {7} with sizes: 1");
}
{
ASSERT_THROWS_WITH(torch::tensor({{{1, 2.0}, {1, 2.0}}}),
"Expected all elements of the tensor to have the same scalar type: Int, but got element of scalar type: Double");
}
{
ASSERT_THROWS_WITH(torch::tensor({{{true, 2.0, 3}, {true, 2.0, 3}}}),
"Expected all elements of the tensor to have the same scalar type: Bool, but got element of scalar type: Double");
}
}
TEST(TensorTest, MultidimTensorCtor_CUDA) {
{
auto tensor = torch::tensor(
{{{{{{{{1.0, 2.0, 3.0}}}}}, {{{{{4.0, 5.0, 6.0}}}}}, {{{{{7.0, 8.0, 9.0}}}}}}}},
torch::dtype(torch::kDouble).device(torch::kCUDA));
ASSERT_TRUE(tensor.device().is_cuda());
ASSERT_EQ(tensor.dtype(), torch::kDouble);
ASSERT_EQ(tensor.sizes(), torch::IntArrayRef({1, 1, 3, 1, 1, 1, 1, 3}));
ASSERT_TRUE(torch::allclose(
tensor,
torch::arange(1, 10, torch::kDouble).view(tensor.sizes()).to(torch::kCUDA)));
ASSERT_FALSE(tensor.requires_grad());
}
}
TEST(TensorTest, PrettyPrintInitListTensor) {
{
ASSERT_EQ(
c10::str(torch::detail::InitListTensor(1.1)),
"1.1");
}
{
ASSERT_EQ(
c10::str(torch::detail::InitListTensor({1.1, 2.2})),
"{1.1, 2.2}");
}
{
ASSERT_EQ(
c10::str(torch::detail::InitListTensor({{1, 2}, {3, 4}})),
"{{1, 2}, {3, 4}}");
}
{
ASSERT_EQ(
c10::str(torch::detail::InitListTensor({{{{{{{{1.1, 2.2, 3.3}}}}}, {{{{{4.4, 5.5, 6.6}}}}}, {{{{{7.7, 8.8, 9.9}}}}}}}})),
"{{{{{{{{1.1, 2.2, 3.3}}}}}, {{{{{4.4, 5.5, 6.6}}}}}, {{{{{7.7, 8.8, 9.9}}}}}}}}");
}
}
TEST(TensorTest, ContainsCorrectValuesWhenConstructedFromVector) {
2018-06-20 11:44:21 -07:00
std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto tensor = at::tensor(v);
ASSERT_EQ(tensor.numel(), v.size());
ASSERT_EQ(tensor.dtype(), at::kInt);
2018-06-20 11:44:21 -07:00
for (size_t i = 0; i < v.size(); ++i) {
ASSERT_TRUE(exactly_equal(tensor[i], v.at(i)));
2018-06-20 11:44:21 -07:00
}
std::vector<double> w = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9, 10.0};
2018-06-20 11:44:21 -07:00
tensor = at::tensor(w);
ASSERT_EQ(tensor.numel(), w.size());
ASSERT_EQ(tensor.dtype(), at::kDouble);
2018-06-20 11:44:21 -07:00
for (size_t i = 0; i < w.size(); ++i) {
ASSERT_TRUE(almost_equal(tensor[i], w.at(i)));
2018-06-20 11:44:21 -07:00
}
}
TEST(TensorTest, UsesOptionsThatAreSupplied) {
auto tensor = at::tensor(123, at::dtype(at::kFloat)) + 0.5;
ASSERT_EQ(tensor.numel(), 1);
ASSERT_EQ(tensor.dtype(), at::kFloat);
ASSERT_TRUE(almost_equal(tensor[0], 123.5));
2018-06-20 11:44:21 -07:00
tensor = at::tensor({1.1, 2.2, 3.3}, at::dtype(at::kInt));
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kInt);
ASSERT_EQ(tensor.layout(), at::kStrided);
ASSERT_TRUE(exactly_equal(tensor[0], 1));
ASSERT_TRUE(exactly_equal(tensor[1], 2));
ASSERT_TRUE(exactly_equal(tensor[2], 3));
2018-06-20 11:44:21 -07:00
}
TEST(TensorTest, FromBlob) {
std::vector<double> v = {1.0, 2.0, 3.0};
auto tensor = torch::from_blob(
v.data(), v.size(), torch::dtype(torch::kFloat64).requires_grad(true));
ASSERT_TRUE(tensor.is_variable());
ASSERT_TRUE(tensor.requires_grad());
ASSERT_EQ(tensor.dtype(), torch::kFloat64);
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor[0].item<double>(), 1);
ASSERT_EQ(tensor[1].item<double>(), 2);
ASSERT_EQ(tensor[2].item<double>(), 3);
}
TEST(TensorTest, FromBlobUsesDeleter) {
bool called = false;
{
std::vector<int32_t> v = {1, 2, 3};
auto tensor = torch::from_blob(
v.data(),
v.size(),
/*deleter=*/[&called](void* data) { called = true; },
torch::kInt32);
}
ASSERT_TRUE(called);
}
TEST(TensorTest, FromBlobWithStrides) {
// clang-format off
std::vector<int32_t> v = {
1, 2, 3,
4, 5, 6,
7, 8, 9
};
// clang-format on
auto tensor = torch::from_blob(
v.data(),
/*sizes=*/{3, 3},
/*strides=*/{1, 3},
torch::kInt32);
ASSERT_TRUE(tensor.is_variable());
ASSERT_EQ(tensor.dtype(), torch::kInt32);
ASSERT_EQ(tensor.numel(), 9);
const std::vector<int64_t> expected_strides = {1, 3};
ASSERT_EQ(tensor.strides(), expected_strides);
for (int64_t i = 0; i < tensor.size(0); ++i) {
for (int64_t j = 0; j < tensor.size(1); ++j) {
// NOTE: This is column major because the strides are swapped.
EXPECT_EQ(tensor[i][j].item<int32_t>(), 1 + (j * tensor.size(1)) + i);
}
}
}
TEST(TensorTest, Item) {
{
torch::Tensor tensor = torch::tensor(3.14);
torch::Scalar scalar = tensor.item();
ASSERT_NEAR(scalar.to<float>(), 3.14, 1e-5);
}
{
torch::Tensor tensor = torch::tensor(123);
torch::Scalar scalar = tensor.item();
ASSERT_EQ(scalar.to<int>(), 123);
}
}
TEST(TensorTest, Item_CUDA) {
{
torch::Tensor tensor = torch::tensor(3.14, torch::kCUDA);
torch::Scalar scalar = tensor.item();
ASSERT_NEAR(scalar.to<float>(), 3.14, 1e-5);
}
{
torch::Tensor tensor = torch::tensor(123, torch::kCUDA);
torch::Scalar scalar = tensor.item();
ASSERT_EQ(scalar.to<int>(), 123);
}
}
TEST(TensorTest, DataPtr) {
auto tensor = at::empty({3, 4}, at::kFloat);
auto tensor_not_copy = tensor.to(tensor.options());
ASSERT_EQ(tensor_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
ASSERT_EQ(tensor_not_copy.data_ptr(), tensor.data_ptr());
}
TEST(TensorTest, Data) {
const auto tensor = torch::rand({3, 3});
ASSERT_TRUE(torch::equal(tensor, tensor.data()));
const auto tensor2 = at::rand({3, 3});
ASSERT_THROW(tensor2.data(), c10::Error);
}
TEST(TensorTest, BackwardAndGrad) {
auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
auto y = x * x;
y.backward();
ASSERT_EQ(x.grad().item<float>(), 10.0);
x = at::tensor({5});
y = x * x;
ASSERT_THROWS_WITH(y.backward(), "backward is not implemented for Tensor");
ASSERT_THROWS_WITH(x.grad(), "grad is not implemented for Tensor");
}
TEST(TensorTest, BackwardCreatesOnesGrad) {
const auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
x.backward();
ASSERT_TRUE(torch::equal(x.grad(),
torch::ones_like(x)));
}
TEST(TensorTest, BackwardNonScalarOutputs) {
auto x = torch::randn({5, 5}, torch::requires_grad());
auto y = x * x;
ASSERT_THROWS_WITH(y.backward(),
"grad can be implicitly created only for scalar outputs");
}
TEST(TensorTest, IsLeaf) {
auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
auto y = x * x;
ASSERT_TRUE(x.is_leaf());
ASSERT_FALSE(y.is_leaf());
x = at::tensor({5});
y = x * x;
const auto message = "is_leaf is not implemented for Tensor";
ASSERT_THROWS_WITH(y.is_leaf(), message);
ASSERT_THROWS_WITH(x.is_leaf(), message);
}
TEST(TensorTest, OutputNr) {
auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
auto y = x * x;
ASSERT_EQ(x.output_nr(), 0);
ASSERT_EQ(y.output_nr(), 0);
x = at::tensor({5});
y = x * x;
const auto message = "output_nr is not implemented for Tensor";
ASSERT_THROWS_WITH(y.output_nr(), message);
ASSERT_THROWS_WITH(x.output_nr(), message);
}
TEST(TensorTest, Version) {
auto x = torch::ones(3);
ASSERT_EQ(x._version(), 0);
x.mul_(2);
ASSERT_EQ(x._version(), 1);
x.add_(1);
ASSERT_EQ(x._version(), 2);
x = at::ones(3);
const auto message = "version is not implemented for Tensor";
ASSERT_THROWS_WITH(x._version(), message);
x.mul_(2);
ASSERT_THROWS_WITH(x._version(), message);
x.add_(1);
ASSERT_THROWS_WITH(x._version(), message);
}
TEST(TensorTest, Detach) {
auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
auto y = x * x;
const auto y_detached = y.detach();
ASSERT_FALSE(y.is_leaf());
ASSERT_TRUE(y_detached.is_leaf());
ASSERT_FALSE(y_detached.requires_grad());
x = at::tensor({5}, at::TensorOptions().requires_grad(false));
y = x * x;
const auto message = "detach is not implemented for Tensor";
ASSERT_THROWS_WITH(x.detach(), message);
ASSERT_THROWS_WITH(y.detach(), message);
}
TEST(TensorTest, DetachInplace) {
auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
auto y = x * x;
auto y_detached = y.detach_();
ASSERT_TRUE(y.is_leaf());
ASSERT_FALSE(y.requires_grad());
ASSERT_TRUE(y_detached.is_leaf());
ASSERT_FALSE(y_detached.requires_grad());
x = at::tensor({5}, at::TensorOptions().requires_grad(false));
y = x * x;
const auto message = "detach_ is not implemented for Tensor";
ASSERT_THROWS_WITH(x.detach_(), message);
ASSERT_THROWS_WITH(y.detach_(), message);
}
TEST(TensorTest, SetData) {
auto x = torch::randn({5});
auto y = torch::randn({5});
ASSERT_FALSE(torch::equal(x, y));
ASSERT_NE(x.data_ptr<float>(), y.data_ptr<float>());
x.set_data(y);
ASSERT_TRUE(torch::equal(x, y));
ASSERT_EQ(x.data_ptr<float>(), y.data_ptr<float>());
x = at::tensor({5});
y = at::tensor({5});
ASSERT_THROWS_WITH(x.set_data(y), "set_data is not implemented for Tensor");
}