2018-09-21 21:12:37 -07:00
|
|
|
#include <gtest/gtest.h>
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
|
2019-02-13 19:28:05 -08:00
|
|
|
#include <c10/util/tempfile.h>
|
|
|
|
|
|
Re-organize C++ API `torch::nn` folder structure (#26262)
Summary:
This PR aims to re-organize C++ API `torch::nn` folder structure in the following way:
- Every module in `torch/csrc/api/include/torch/nn/modules/` (except `any.h`, `named_any.h`, `modulelist.h`, `sequential.h`, `embedding.h`) has a strictly equivalent Python file in `torch/nn/modules/`. For example:
`torch/csrc/api/include/torch/nn/modules/pooling.h` -> `torch/nn/modules/pooling.py`
`torch/csrc/api/include/torch/nn/modules/conv.h` -> `torch/nn/modules/conv.py`
`torch/csrc/api/include/torch/nn/modules/batchnorm.h` -> `torch/nn/modules/batchnorm.py`
`torch/csrc/api/include/torch/nn/modules/sparse.h` -> `torch/nn/modules/sparse.py`
- Containers such as `any.h`, `named_any.h`, `modulelist.h`, `sequential.h` are moved into `torch/csrc/api/include/torch/nn/modules/container/`, because their implementations are too long to be combined into one file (like `torch/nn/modules/container.py` in Python API)
- `embedding.h` is not renamed to `sparse.h` yet, because we have another work stream that works on API parity for Embedding and EmbeddingBag, and renaming the file would cause conflict. After the embedding API parity work is done, we will rename `embedding.h` to `sparse.h` to match the Python file name, and move the embedding options out to options/ folder.
- `torch/csrc/api/include/torch/nn/functional/` is added, and the folder structure mirrors that of `torch/csrc/api/include/torch/nn/modules/`. For example, `torch/csrc/api/include/torch/nn/functional/pooling.h` contains the functions for pooling, which are then used by the pooling modules in `torch/csrc/api/include/torch/nn/modules/pooling.h`.
- `torch/csrc/api/include/torch/nn/options/` is added, and the folder structure mirrors that of `torch/csrc/api/include/torch/nn/modules/`. For example, `torch/csrc/api/include/torch/nn/options/pooling.h` contains MaxPoolOptions, which is used by both MaxPool modules in `torch/csrc/api/include/torch/nn/modules/pooling.h`, and max_pool functions in `torch/csrc/api/include/torch/nn/functional/pooling.h`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26262
Differential Revision: D17422426
Pulled By: yf225
fbshipit-source-id: c413d2a374ba716dac81db31516619bbd879db7f
2019-09-17 10:05:11 -07:00
|
|
|
#include <torch/torch.h>
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
|
2018-09-21 21:12:37 -07:00
|
|
|
#include <test/cpp/api/support.h>
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
|
|
|
|
|
#include <cstdio>
|
|
|
|
|
#include <memory>
|
|
|
|
|
#include <sstream>
|
|
|
|
|
#include <string>
|
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
|
|
using namespace torch::nn;
|
|
|
|
|
using namespace torch::serialize;
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
Sequential xor_model() {
|
|
|
|
|
return Sequential(
|
|
|
|
|
Linear(2, 8),
|
|
|
|
|
Functional(at::sigmoid),
|
|
|
|
|
Linear(8, 1),
|
|
|
|
|
Functional(at::sigmoid));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
torch::Tensor save_and_load(torch::Tensor input) {
|
2018-10-15 15:45:46 -07:00
|
|
|
std::stringstream stream;
|
|
|
|
|
torch::save(input, stream);
|
|
|
|
|
torch::Tensor tensor;
|
|
|
|
|
torch::load(tensor, stream);
|
|
|
|
|
return tensor;
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
}
|
|
|
|
|
} // namespace
|
|
|
|
|
|
2018-10-15 15:45:46 -07:00
|
|
|
TEST(SerializeTest, Basic) {
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
torch::manual_seed(0);
|
|
|
|
|
|
|
|
|
|
auto x = torch::randn({5, 5});
|
|
|
|
|
auto y = save_and_load(x);
|
|
|
|
|
|
2018-09-21 21:12:37 -07:00
|
|
|
ASSERT_TRUE(y.defined());
|
|
|
|
|
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
|
|
|
|
|
ASSERT_TRUE(x.allclose(y));
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
}
|
|
|
|
|
|
2018-10-15 15:45:46 -07:00
|
|
|
TEST(SerializeTest, BasicToFile) {
|
|
|
|
|
torch::manual_seed(0);
|
|
|
|
|
|
|
|
|
|
auto x = torch::randn({5, 5});
|
|
|
|
|
|
2019-02-13 19:28:05 -08:00
|
|
|
auto tempfile = c10::make_tempfile();
|
2018-10-15 15:45:46 -07:00
|
|
|
torch::save(x, tempfile.name);
|
|
|
|
|
|
|
|
|
|
torch::Tensor y;
|
|
|
|
|
torch::load(y, tempfile.name);
|
|
|
|
|
|
|
|
|
|
ASSERT_TRUE(y.defined());
|
|
|
|
|
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
|
|
|
|
|
ASSERT_TRUE(x.allclose(y));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(SerializeTest, Resized) {
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
torch::manual_seed(0);
|
|
|
|
|
|
|
|
|
|
auto x = torch::randn({11, 5});
|
|
|
|
|
x.resize_({5, 5});
|
|
|
|
|
auto y = save_and_load(x);
|
|
|
|
|
|
2018-09-21 21:12:37 -07:00
|
|
|
ASSERT_TRUE(y.defined());
|
|
|
|
|
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
|
|
|
|
|
ASSERT_TRUE(x.allclose(y));
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
}
|
|
|
|
|
|
2018-10-15 15:45:46 -07:00
|
|
|
TEST(SerializeTest, Sliced) {
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
torch::manual_seed(0);
|
|
|
|
|
|
|
|
|
|
auto x = torch::randn({11, 5});
|
|
|
|
|
x = x.slice(0, 1, 5);
|
|
|
|
|
auto y = save_and_load(x);
|
|
|
|
|
|
2018-09-21 21:12:37 -07:00
|
|
|
ASSERT_TRUE(y.defined());
|
|
|
|
|
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
|
|
|
|
|
ASSERT_TRUE(x.allclose(y));
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
}
|
|
|
|
|
|
2018-10-15 15:45:46 -07:00
|
|
|
TEST(SerializeTest, NonContiguous) {
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
torch::manual_seed(0);
|
|
|
|
|
|
|
|
|
|
auto x = torch::randn({11, 5});
|
|
|
|
|
x = x.slice(1, 1, 4);
|
|
|
|
|
auto y = save_and_load(x);
|
|
|
|
|
|
2018-09-21 21:12:37 -07:00
|
|
|
ASSERT_TRUE(y.defined());
|
|
|
|
|
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
|
|
|
|
|
ASSERT_TRUE(x.allclose(y));
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
}
|
|
|
|
|
|
2018-10-15 15:45:46 -07:00
|
|
|
TEST(SerializeTest, XOR) {
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
// We better be able to save and load an XOR model!
|
|
|
|
|
auto getLoss = [](Sequential model, uint32_t batch_size) {
|
|
|
|
|
auto inputs = torch::empty({batch_size, 2});
|
|
|
|
|
auto labels = torch::empty({batch_size});
|
|
|
|
|
for (size_t i = 0; i < batch_size; i++) {
|
|
|
|
|
inputs[i] = torch::randint(2, {2}, torch::kInt64);
|
Remove caffe2::Tensor::capacity_nbytes, at::Tensor::to##name##Data, (#11876)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11876
Modern C++ api instead of macros, item() is aligned with Python frontend. caffe2::Tensor::capacity_nbytes is effecitvely unused and confusing w.r.t. caffe2::Tensor::nbytes().
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCComplexDouble "item<std::complex<double>>"
codemod -d tc --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
Reviewed By: ezyang
Differential Revision: D9948572
fbshipit-source-id: 70c9f5390d92b82c85fdd5f8a5aebca338ab413c
2018-09-24 10:39:10 -07:00
|
|
|
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
}
|
|
|
|
|
auto x = model->forward<torch::Tensor>(inputs);
|
|
|
|
|
return torch::binary_cross_entropy(x, labels);
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
auto model = xor_model();
|
|
|
|
|
auto model2 = xor_model();
|
|
|
|
|
auto model3 = xor_model();
|
|
|
|
|
auto optimizer = torch::optim::SGD(
|
|
|
|
|
model->parameters(),
|
|
|
|
|
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
|
|
|
|
|
1e-6));
|
|
|
|
|
|
|
|
|
|
float running_loss = 1;
|
|
|
|
|
int epoch = 0;
|
|
|
|
|
while (running_loss > 0.1) {
|
|
|
|
|
torch::Tensor loss = getLoss(model, 4);
|
|
|
|
|
optimizer.zero_grad();
|
|
|
|
|
loss.backward();
|
|
|
|
|
optimizer.step();
|
|
|
|
|
|
Remove caffe2::Tensor::capacity_nbytes, at::Tensor::to##name##Data, (#11876)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11876
Modern C++ api instead of macros, item() is aligned with Python frontend. caffe2::Tensor::capacity_nbytes is effecitvely unused and confusing w.r.t. caffe2::Tensor::nbytes().
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCComplexDouble "item<std::complex<double>>"
codemod -d tc --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
Reviewed By: ezyang
Differential Revision: D9948572
fbshipit-source-id: 70c9f5390d92b82c85fdd5f8a5aebca338ab413c
2018-09-24 10:39:10 -07:00
|
|
|
running_loss = running_loss * 0.99 + loss.sum().item<float>() * 0.01;
|
2018-09-21 21:12:37 -07:00
|
|
|
ASSERT_LT(epoch, 3000);
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
epoch++;
|
|
|
|
|
}
|
|
|
|
|
|
2019-02-13 19:28:05 -08:00
|
|
|
auto tempfile = c10::make_tempfile();
|
2018-10-15 15:45:46 -07:00
|
|
|
torch::save(model, tempfile.name);
|
|
|
|
|
torch::load(model2, tempfile.name);
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
|
|
|
|
|
auto loss = getLoss(model2, 100);
|
Remove caffe2::Tensor::capacity_nbytes, at::Tensor::to##name##Data, (#11876)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11876
Modern C++ api instead of macros, item() is aligned with Python frontend. caffe2::Tensor::capacity_nbytes is effecitvely unused and confusing w.r.t. caffe2::Tensor::nbytes().
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCComplexDouble "item<std::complex<double>>"
codemod -d tc --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
Reviewed By: ezyang
Differential Revision: D9948572
fbshipit-source-id: 70c9f5390d92b82c85fdd5f8a5aebca338ab413c
2018-09-24 10:39:10 -07:00
|
|
|
ASSERT_LT(loss.item<float>(), 0.1);
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
}
|
|
|
|
|
|
2018-10-15 15:45:46 -07:00
|
|
|
TEST(SerializeTest, Optim) {
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
auto model1 = Linear(5, 2);
|
|
|
|
|
auto model2 = Linear(5, 2);
|
|
|
|
|
auto model3 = Linear(5, 2);
|
|
|
|
|
|
|
|
|
|
// Models 1, 2, 3 will have the same parameters.
|
2019-02-13 19:28:05 -08:00
|
|
|
auto model_tempfile = c10::make_tempfile();
|
2018-10-15 15:45:46 -07:00
|
|
|
torch::save(model1, model_tempfile.name);
|
|
|
|
|
torch::load(model2, model_tempfile.name);
|
|
|
|
|
torch::load(model3, model_tempfile.name);
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
|
Replace cursors with OrderedDict (#13427)
Summary:
This is a pre-cursor diff to Python <-> C++ frontend integration -- I have a follow-up PR coming for that. This PR changes the C++ frontend module interface to replace the custom "cursor"s I introduced some time ago with `OrderedDict`. I introduced cursors at the time as a convenient way of applying functions and query operations on a modules' parameters, buffers and modules, allowing things like `module.parameters().map(my_func)`. However, I noticed that (1) this functionality is easily implement-able on top of a regular data structure and (2) more importantly, using OrderedDicts is much, much easier for Python integration. This is especially true given that ScriptModule today also uses OrderedDict. Since C++ frontend modules and ScriptModules will soon too share as many implementation details as possible, it is overall the best move to ditch the custom cursor datastructure and pervasively use OrderedDict everywhere.
For this I did:
1. Changed the C++ frontend module interface to more closely match the Python one by providing `parameters()`, `named_parameters()` and other methods Python provides. This is very important for the following diff which binds these into Python for inter-op with Python modules.
2. In lieu of the `Cursor::apply()` method I added `nn::Module::apply`. This again is one more unifying step between Python and C++, since Python modules have an apply function too.
3. Deleted all uses of Cursor.
4. Tidied and beefed up the `OrderedDict` class. In particular, I made `OrderedDict::Item` store an `std::pair` under the hood, because that is trivial to bind into Python and saved me a lot of headaches. `key` and `value` become methods instead of fields, which they should have been from the very start anyway because it allows exactly these kinds of changes, as per usual good software engineering principle of encapsulation.
5. Added many tests for the OrderedDict use in `nn::Module`.
ebetica ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13427
Differential Revision: D12894092
Pulled By: goldsborough
fbshipit-source-id: 715770c95a9643753a1db26d7f9da9a78619a15d
2018-11-07 10:53:07 -08:00
|
|
|
auto param1 = model1->named_parameters();
|
|
|
|
|
auto param2 = model2->named_parameters();
|
|
|
|
|
auto param3 = model3->named_parameters();
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
for (const auto& p : param1) {
|
Replace cursors with OrderedDict (#13427)
Summary:
This is a pre-cursor diff to Python <-> C++ frontend integration -- I have a follow-up PR coming for that. This PR changes the C++ frontend module interface to replace the custom "cursor"s I introduced some time ago with `OrderedDict`. I introduced cursors at the time as a convenient way of applying functions and query operations on a modules' parameters, buffers and modules, allowing things like `module.parameters().map(my_func)`. However, I noticed that (1) this functionality is easily implement-able on top of a regular data structure and (2) more importantly, using OrderedDicts is much, much easier for Python integration. This is especially true given that ScriptModule today also uses OrderedDict. Since C++ frontend modules and ScriptModules will soon too share as many implementation details as possible, it is overall the best move to ditch the custom cursor datastructure and pervasively use OrderedDict everywhere.
For this I did:
1. Changed the C++ frontend module interface to more closely match the Python one by providing `parameters()`, `named_parameters()` and other methods Python provides. This is very important for the following diff which binds these into Python for inter-op with Python modules.
2. In lieu of the `Cursor::apply()` method I added `nn::Module::apply`. This again is one more unifying step between Python and C++, since Python modules have an apply function too.
3. Deleted all uses of Cursor.
4. Tidied and beefed up the `OrderedDict` class. In particular, I made `OrderedDict::Item` store an `std::pair` under the hood, because that is trivial to bind into Python and saved me a lot of headaches. `key` and `value` become methods instead of fields, which they should have been from the very start anyway because it allows exactly these kinds of changes, as per usual good software engineering principle of encapsulation.
5. Added many tests for the OrderedDict use in `nn::Module`.
ebetica ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13427
Differential Revision: D12894092
Pulled By: goldsborough
fbshipit-source-id: 715770c95a9643753a1db26d7f9da9a78619a15d
2018-11-07 10:53:07 -08:00
|
|
|
ASSERT_TRUE(p->allclose(param2[p.key()]));
|
|
|
|
|
ASSERT_TRUE(param2[p.key()].allclose(param3[p.key()]));
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Make some optimizers with momentum (and thus state)
|
|
|
|
|
auto optim1 = torch::optim::SGD(
|
|
|
|
|
model1->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
|
|
|
|
|
auto optim2 = torch::optim::SGD(
|
|
|
|
|
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
|
|
|
|
|
auto optim2_2 = torch::optim::SGD(
|
|
|
|
|
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
|
|
|
|
|
auto optim3 = torch::optim::SGD(
|
|
|
|
|
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
|
|
|
|
|
auto optim3_2 = torch::optim::SGD(
|
|
|
|
|
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
|
|
|
|
|
|
|
|
|
|
auto x = torch::ones({10, 5});
|
|
|
|
|
|
|
|
|
|
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
|
|
|
|
|
optimizer.zero_grad();
|
|
|
|
|
auto y = model->forward(x).sum();
|
|
|
|
|
y.backward();
|
|
|
|
|
optimizer.step();
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Do 2 steps of model1
|
|
|
|
|
step(optim1, model1);
|
|
|
|
|
step(optim1, model1);
|
|
|
|
|
|
|
|
|
|
// Do 2 steps of model 2 without saving the optimizer
|
|
|
|
|
step(optim2, model2);
|
|
|
|
|
step(optim2_2, model2);
|
|
|
|
|
|
|
|
|
|
// Do 2 steps of model 3 while saving the optimizer
|
|
|
|
|
step(optim3, model3);
|
|
|
|
|
|
2019-02-13 19:28:05 -08:00
|
|
|
auto optim_tempfile = c10::make_tempfile();
|
2018-10-15 15:45:46 -07:00
|
|
|
torch::save(optim3, optim_tempfile.name);
|
|
|
|
|
torch::load(optim3_2, optim_tempfile.name);
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
step(optim3_2, model3);
|
|
|
|
|
|
Replace cursors with OrderedDict (#13427)
Summary:
This is a pre-cursor diff to Python <-> C++ frontend integration -- I have a follow-up PR coming for that. This PR changes the C++ frontend module interface to replace the custom "cursor"s I introduced some time ago with `OrderedDict`. I introduced cursors at the time as a convenient way of applying functions and query operations on a modules' parameters, buffers and modules, allowing things like `module.parameters().map(my_func)`. However, I noticed that (1) this functionality is easily implement-able on top of a regular data structure and (2) more importantly, using OrderedDicts is much, much easier for Python integration. This is especially true given that ScriptModule today also uses OrderedDict. Since C++ frontend modules and ScriptModules will soon too share as many implementation details as possible, it is overall the best move to ditch the custom cursor datastructure and pervasively use OrderedDict everywhere.
For this I did:
1. Changed the C++ frontend module interface to more closely match the Python one by providing `parameters()`, `named_parameters()` and other methods Python provides. This is very important for the following diff which binds these into Python for inter-op with Python modules.
2. In lieu of the `Cursor::apply()` method I added `nn::Module::apply`. This again is one more unifying step between Python and C++, since Python modules have an apply function too.
3. Deleted all uses of Cursor.
4. Tidied and beefed up the `OrderedDict` class. In particular, I made `OrderedDict::Item` store an `std::pair` under the hood, because that is trivial to bind into Python and saved me a lot of headaches. `key` and `value` become methods instead of fields, which they should have been from the very start anyway because it allows exactly these kinds of changes, as per usual good software engineering principle of encapsulation.
5. Added many tests for the OrderedDict use in `nn::Module`.
ebetica ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13427
Differential Revision: D12894092
Pulled By: goldsborough
fbshipit-source-id: 715770c95a9643753a1db26d7f9da9a78619a15d
2018-11-07 10:53:07 -08:00
|
|
|
param1 = model1->named_parameters();
|
|
|
|
|
param2 = model2->named_parameters();
|
|
|
|
|
param3 = model3->named_parameters();
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
for (const auto& p : param1) {
|
Replace cursors with OrderedDict (#13427)
Summary:
This is a pre-cursor diff to Python <-> C++ frontend integration -- I have a follow-up PR coming for that. This PR changes the C++ frontend module interface to replace the custom "cursor"s I introduced some time ago with `OrderedDict`. I introduced cursors at the time as a convenient way of applying functions and query operations on a modules' parameters, buffers and modules, allowing things like `module.parameters().map(my_func)`. However, I noticed that (1) this functionality is easily implement-able on top of a regular data structure and (2) more importantly, using OrderedDicts is much, much easier for Python integration. This is especially true given that ScriptModule today also uses OrderedDict. Since C++ frontend modules and ScriptModules will soon too share as many implementation details as possible, it is overall the best move to ditch the custom cursor datastructure and pervasively use OrderedDict everywhere.
For this I did:
1. Changed the C++ frontend module interface to more closely match the Python one by providing `parameters()`, `named_parameters()` and other methods Python provides. This is very important for the following diff which binds these into Python for inter-op with Python modules.
2. In lieu of the `Cursor::apply()` method I added `nn::Module::apply`. This again is one more unifying step between Python and C++, since Python modules have an apply function too.
3. Deleted all uses of Cursor.
4. Tidied and beefed up the `OrderedDict` class. In particular, I made `OrderedDict::Item` store an `std::pair` under the hood, because that is trivial to bind into Python and saved me a lot of headaches. `key` and `value` become methods instead of fields, which they should have been from the very start anyway because it allows exactly these kinds of changes, as per usual good software engineering principle of encapsulation.
5. Added many tests for the OrderedDict use in `nn::Module`.
ebetica ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13427
Differential Revision: D12894092
Pulled By: goldsborough
fbshipit-source-id: 715770c95a9643753a1db26d7f9da9a78619a15d
2018-11-07 10:53:07 -08:00
|
|
|
const auto& name = p.key();
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
// Model 1 and 3 should be the same
|
2018-09-21 21:12:37 -07:00
|
|
|
ASSERT_TRUE(
|
Remove caffe2::Tensor::capacity_nbytes, at::Tensor::to##name##Data, (#11876)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11876
Modern C++ api instead of macros, item() is aligned with Python frontend. caffe2::Tensor::capacity_nbytes is effecitvely unused and confusing w.r.t. caffe2::Tensor::nbytes().
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCComplexDouble "item<std::complex<double>>"
codemod -d tc --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
Reviewed By: ezyang
Differential Revision: D9948572
fbshipit-source-id: 70c9f5390d92b82c85fdd5f8a5aebca338ab413c
2018-09-24 10:39:10 -07:00
|
|
|
param1[name].norm().item<float>() == param3[name].norm().item<float>());
|
2018-09-21 21:12:37 -07:00
|
|
|
ASSERT_TRUE(
|
Remove caffe2::Tensor::capacity_nbytes, at::Tensor::to##name##Data, (#11876)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11876
Modern C++ api instead of macros, item() is aligned with Python frontend. caffe2::Tensor::capacity_nbytes is effecitvely unused and confusing w.r.t. caffe2::Tensor::nbytes().
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>"
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCComplexDouble "item<std::complex<double>>"
codemod -d tc --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>"
Reviewed By: ezyang
Differential Revision: D9948572
fbshipit-source-id: 70c9f5390d92b82c85fdd5f8a5aebca338ab413c
2018-09-24 10:39:10 -07:00
|
|
|
param1[name].norm().item<float>() != param2[name].norm().item<float>());
|
Protobuf serialization (#11619)
Summary:
This PR serves two purposes:
1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.
This is currently a rough prototype I coded up today, to get quick feedback.
For this I propose the following serialization interface within the C++ API:
```cpp
namespace torch { namespace serialize {
class Reader {
public:
virtual ~Reader() = default;
virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
class Writer {
public:
virtual ~Reader() = default;
virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
virtual void finish() { }
};
}} // namespace torch::serialize
```
There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:
1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.
The user-facing API is (conceptually):
```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```
with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`
ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619
Differential Revision: D9984664
Pulled By: goldsborough
fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:36:22 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2019-09-27 09:35:29 -07:00
|
|
|
TEST(SerializeTest, SerializationShouldPreserveIteration_SGD) {
|
|
|
|
|
std::vector<torch::Tensor> parameters = {
|
|
|
|
|
torch::randn({2, 2}), torch::randn({3, 3})};
|
|
|
|
|
|
|
|
|
|
torch::optim::SGD optimizer(parameters, 1.0);
|
|
|
|
|
|
|
|
|
|
optimizer.step();
|
|
|
|
|
optimizer.step();
|
|
|
|
|
|
|
|
|
|
ASSERT_EQ(optimizer.iteration(), 2);
|
|
|
|
|
|
|
|
|
|
auto tempfile = c10::make_tempfile();
|
|
|
|
|
torch::save(optimizer, tempfile.name);
|
|
|
|
|
|
|
|
|
|
torch::optim::SGD optimizer_out(parameters, 1.0);
|
|
|
|
|
ASSERT_EQ(optimizer_out.iteration(), 0);
|
|
|
|
|
|
|
|
|
|
torch::load(optimizer_out, tempfile.name);
|
|
|
|
|
ASSERT_EQ(optimizer_out.iteration(), 2);
|
|
|
|
|
}
|
|
|
|
|
|
2018-10-15 15:45:46 -07:00
|
|
|
TEST(SerializeTest, XOR_CUDA) {
|
|
|
|
|
torch::manual_seed(0);
|
|
|
|
|
// We better be able to save and load a XOR model!
|
2018-12-11 22:38:14 -08:00
|
|
|
auto getLoss = [](Sequential model,
|
|
|
|
|
uint32_t batch_size,
|
|
|
|
|
bool is_cuda = false) {
|
2018-10-15 15:45:46 -07:00
|
|
|
auto inputs = torch::empty({batch_size, 2});
|
|
|
|
|
auto labels = torch::empty({batch_size});
|
2018-12-04 00:44:43 -08:00
|
|
|
if (is_cuda) {
|
|
|
|
|
inputs = inputs.cuda();
|
|
|
|
|
labels = labels.cuda();
|
|
|
|
|
}
|
2018-10-15 15:45:46 -07:00
|
|
|
for (size_t i = 0; i < batch_size; i++) {
|
|
|
|
|
inputs[i] = torch::randint(2, {2}, torch::kInt64);
|
|
|
|
|
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
|
|
|
|
|
}
|
|
|
|
|
auto x = model->forward<torch::Tensor>(inputs);
|
|
|
|
|
return torch::binary_cross_entropy(x, labels);
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
auto model = xor_model();
|
|
|
|
|
auto model2 = xor_model();
|
|
|
|
|
auto model3 = xor_model();
|
|
|
|
|
auto optimizer = torch::optim::SGD(
|
|
|
|
|
model->parameters(),
|
|
|
|
|
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
|
|
|
|
|
1e-6));
|
|
|
|
|
|
|
|
|
|
float running_loss = 1;
|
|
|
|
|
int epoch = 0;
|
|
|
|
|
while (running_loss > 0.1) {
|
|
|
|
|
torch::Tensor loss = getLoss(model, 4);
|
|
|
|
|
optimizer.zero_grad();
|
|
|
|
|
loss.backward();
|
|
|
|
|
optimizer.step();
|
|
|
|
|
|
|
|
|
|
running_loss = running_loss * 0.99 + loss.sum().item<float>() * 0.01;
|
|
|
|
|
ASSERT_LT(epoch, 3000);
|
|
|
|
|
epoch++;
|
|
|
|
|
}
|
|
|
|
|
|
2019-02-13 19:28:05 -08:00
|
|
|
auto tempfile = c10::make_tempfile();
|
2018-10-15 15:45:46 -07:00
|
|
|
torch::save(model, tempfile.name);
|
|
|
|
|
torch::load(model2, tempfile.name);
|
|
|
|
|
|
|
|
|
|
auto loss = getLoss(model2, 100);
|
|
|
|
|
ASSERT_LT(loss.item<float>(), 0.1);
|
|
|
|
|
|
|
|
|
|
model2->to(torch::kCUDA);
|
2018-12-04 00:44:43 -08:00
|
|
|
loss = getLoss(model2, 100, true);
|
|
|
|
|
ASSERT_LT(loss.item<float>(), 0.1);
|
|
|
|
|
|
2019-02-13 19:28:05 -08:00
|
|
|
auto tempfile2 = c10::make_tempfile();
|
2018-10-15 15:45:46 -07:00
|
|
|
torch::save(model2, tempfile2.name);
|
|
|
|
|
torch::load(model3, tempfile2.name);
|
|
|
|
|
|
2018-12-04 00:44:43 -08:00
|
|
|
loss = getLoss(model3, 100, true);
|
2018-10-15 15:45:46 -07:00
|
|
|
ASSERT_LT(loss.item<float>(), 0.1);
|
|
|
|
|
}
|
2018-12-11 22:38:14 -08:00
|
|
|
|
|
|
|
|
TEST(
|
|
|
|
|
SerializeTest,
|
|
|
|
|
CanSerializeModulesWithIntermediateModulesWithoutParametersOrBuffers) {
|
|
|
|
|
struct C : torch::nn::Module {
|
|
|
|
|
C() {
|
|
|
|
|
register_buffer("foo", torch::ones(5, torch::kInt32));
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
struct B : torch::nn::Module {};
|
|
|
|
|
struct A : torch::nn::Module {
|
|
|
|
|
A() {
|
|
|
|
|
register_module("b", std::make_shared<B>());
|
|
|
|
|
register_module("c", std::make_shared<C>());
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
struct M : torch::nn::Module {
|
|
|
|
|
M() {
|
|
|
|
|
register_module("a", std::make_shared<A>());
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
auto out = std::make_shared<M>();
|
|
|
|
|
std::stringstream ss;
|
|
|
|
|
torch::save(out, ss);
|
|
|
|
|
auto in = std::make_shared<M>();
|
|
|
|
|
torch::load(in, ss);
|
|
|
|
|
|
|
|
|
|
const int output = in->named_buffers()["a.c.foo"].sum().item<int>();
|
|
|
|
|
ASSERT_EQ(output, 5);
|
|
|
|
|
}
|
2019-04-24 16:43:59 -07:00
|
|
|
|
|
|
|
|
TEST(SerializeTest, VectorOfTensors) {
|
|
|
|
|
torch::manual_seed(0);
|
|
|
|
|
|
|
|
|
|
std::vector<torch::Tensor> x_vec = { torch::randn({1, 2}), torch::randn({3, 4}) };
|
|
|
|
|
|
|
|
|
|
std::stringstream stream;
|
|
|
|
|
torch::save(x_vec, stream);
|
|
|
|
|
|
|
|
|
|
std::vector<torch::Tensor> y_vec;
|
|
|
|
|
torch::load(y_vec, stream);
|
|
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < x_vec.size(); i++) {
|
|
|
|
|
auto& x = x_vec[i];
|
|
|
|
|
auto& y = y_vec[i];
|
|
|
|
|
ASSERT_TRUE(y.defined());
|
|
|
|
|
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
|
|
|
|
|
ASSERT_TRUE(x.allclose(y));
|
|
|
|
|
}
|
|
|
|
|
}
|
2019-04-26 12:38:26 -07:00
|
|
|
|
2019-09-27 09:35:29 -07:00
|
|
|
TEST(SerializeTest, IValue) {
|
|
|
|
|
c10::IValue ivalue(1);
|
|
|
|
|
auto tempfile = c10::make_tempfile();
|
|
|
|
|
torch::serialize::OutputArchive output_archive;
|
|
|
|
|
output_archive.write("value", ivalue);
|
|
|
|
|
output_archive.save_to(tempfile.name);
|
|
|
|
|
|
|
|
|
|
torch::serialize::InputArchive input_archive;
|
|
|
|
|
input_archive.load_from(tempfile.name);
|
|
|
|
|
c10::IValue ivalue_out;
|
|
|
|
|
input_archive.read("value", ivalue_out);
|
|
|
|
|
ASSERT_EQ(ivalue_out.toInt(), 1);
|
|
|
|
|
|
|
|
|
|
ASSERT_THROWS_WITH(input_archive.read("bad_key", ivalue_out), "No such serialized IValue");
|
|
|
|
|
}
|
|
|
|
|
|
2019-04-26 12:38:26 -07:00
|
|
|
// NOTE: if a `Module` contains unserializable submodules (e.g. `nn::Functional`),
|
|
|
|
|
// we expect those submodules to be skipped when the `Module` is being serialized.
|
|
|
|
|
TEST(SerializeTest, UnserializableSubmoduleIsSkippedWhenSavingModule) {
|
|
|
|
|
struct A : torch::nn::Module {
|
|
|
|
|
A() {
|
|
|
|
|
register_module("relu", torch::nn::Functional(torch::relu));
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
auto out = std::make_shared<A>();
|
|
|
|
|
std::stringstream ss;
|
|
|
|
|
torch::save(out, ss);
|
|
|
|
|
|
|
|
|
|
torch::serialize::InputArchive archive;
|
|
|
|
|
archive.load_from(ss);
|
|
|
|
|
torch::serialize::InputArchive relu_archive;
|
|
|
|
|
|
|
|
|
|
// Submodule with name "relu" should not exist in the `InputArchive`,
|
|
|
|
|
// because the "relu" submodule is an `nn::Functional` and is not serializable.
|
|
|
|
|
ASSERT_FALSE(archive.try_read("relu", relu_archive));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// NOTE: If a `Module` contains unserializable submodules (e.g. `nn::Functional`),
|
|
|
|
|
// we don't check the existence of those submodules in the `InputArchive` when
|
|
|
|
|
// deserializing.
|
|
|
|
|
TEST(SerializeTest, UnserializableSubmoduleIsIgnoredWhenLoadingModule) {
|
|
|
|
|
struct B : torch::nn::Module {
|
|
|
|
|
B() {
|
|
|
|
|
register_module("relu1", torch::nn::Functional(torch::relu));
|
|
|
|
|
register_buffer("foo", torch::zeros(5, torch::kInt32));
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
struct A : torch::nn::Module {
|
|
|
|
|
A() {
|
|
|
|
|
register_module("b", std::make_shared<B>());
|
|
|
|
|
register_module("relu2", torch::nn::Functional(torch::relu));
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
auto out = std::make_shared<A>();
|
|
|
|
|
// Manually change the values of "b.foo", so that we can check whether the buffer
|
|
|
|
|
// contains these values after deserialization.
|
|
|
|
|
out->named_buffers()["b.foo"].fill_(1);
|
|
|
|
|
auto tempfile = c10::make_tempfile();
|
|
|
|
|
torch::save(out, tempfile.name);
|
|
|
|
|
|
|
|
|
|
torch::serialize::InputArchive archive;
|
|
|
|
|
archive.load_from(tempfile.name);
|
|
|
|
|
torch::serialize::InputArchive archive_b;
|
|
|
|
|
torch::serialize::InputArchive archive_relu;
|
|
|
|
|
torch::Tensor tensor_foo;
|
|
|
|
|
|
|
|
|
|
ASSERT_TRUE(archive.try_read("b", archive_b));
|
|
|
|
|
ASSERT_TRUE(archive_b.try_read("foo", tensor_foo, /*is_buffer=*/true));
|
|
|
|
|
|
|
|
|
|
// Submodule with name "relu1" should not exist in `archive_b`, because the "relu1"
|
|
|
|
|
// submodule is an `nn::Functional` and is not serializable.
|
|
|
|
|
ASSERT_FALSE(archive_b.try_read("relu1", archive_relu));
|
|
|
|
|
|
|
|
|
|
// Submodule with name "relu2" should not exist in `archive`, because the "relu2"
|
|
|
|
|
// submodule is an `nn::Functional` and is not serializable.
|
|
|
|
|
ASSERT_FALSE(archive.try_read("relu2", archive_relu));
|
|
|
|
|
|
|
|
|
|
auto in = std::make_shared<A>();
|
|
|
|
|
// `torch::load(...)` works without error, even though `A` contains the `nn::Functional`
|
|
|
|
|
// submodules while the serialized file doesn't, because the `nn::Functional` submodules
|
|
|
|
|
// are not serializable and thus ignored when deserializing.
|
|
|
|
|
torch::load(in, tempfile.name);
|
|
|
|
|
|
|
|
|
|
// Check that the "b.foo" buffer is correctly deserialized from the file.
|
|
|
|
|
const int output = in->named_buffers()["b.foo"].sum().item<int>();
|
|
|
|
|
// `output` should equal to the sum of the values we manually assigned to "b.foo" before
|
|
|
|
|
// serialization.
|
|
|
|
|
ASSERT_EQ(output, 5);
|
|
|
|
|
}
|