Files
pytorch/caffe2/python/optimizer_test.py

679 lines
27 KiB
Python
Raw Normal View History

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from caffe2.proto import caffe2_pb2
import caffe2.python.optimizer as optimizer
from caffe2.python.optimizer import (
build_sgd, build_multi_precision_sgd, build_ftrl, build_gftrl, build_wngrad,
build_adagrad, build_adadelta, build_adam, build_yellowfin, build_rms_prop,
add_weight_decay, SgdOptimizer)
from caffe2.python.optimizer_context import UseOptimizer
from caffe2.python.optimizer_test_util import (
OptimizerTestBase, LRModificationTestBase
)
from caffe2.python import core, workspace
from caffe2.python.test_util import TestCase
import numpy as np
from numpy.testing import assert_allclose, assert_equal
import math
import unittest
class TestLars(OptimizerTestBase, TestCase):
def testSparse(self):
raise unittest.SkipTest("no sparse support")
def build_optimizer(self, model, **kwargs):
2018-03-02 18:06:19 -08:00
self._skip_gpu = False
return build_sgd(model, base_learning_rate=0.1, lars=0.5, **kwargs)
def check_optimizer(self, optimizer):
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
self.assertFalse(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().shared:
tensor = workspace.FetchBlob(param)
np.testing.assert_allclose(np.array([1.0]), tensor, atol=1e-5)
2018-03-02 18:06:19 -08:00
class TestMomentumSgd(OptimizerTestBase, TestCase):
def build_optimizer(self, model, **kwargs):
self._skip_gpu = False
return build_sgd(model, base_learning_rate=0.1, momentum=0.1, **kwargs)
def check_optimizer(self, optimizer):
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().shared:
tensor = workspace.FetchBlob(param)
np.testing.assert_allclose(np.array([1.0]), tensor, atol=1e-5)
class TestSgd(OptimizerTestBase, LRModificationTestBase, TestCase):
def build_optimizer(self, model, **kwargs):
self._skip_gpu = False
return build_sgd(model, base_learning_rate=0.1, **kwargs)
def check_optimizer(self, optimizer):
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
self.assertFalse(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().shared:
tensor = workspace.FetchBlob(param)
np.testing.assert_allclose(np.array([1.0]), tensor, atol=1e-5)
class TestMultiPrecisionSgd(
OptimizerTestBase, LRModificationTestBase, TestCase
):
def build_optimizer(self, model, **kwargs):
self._skip_gpu = False
return build_multi_precision_sgd(
model, base_learning_rate=0.1, **kwargs
)
def check_optimizer(self, optimizer):
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
self.assertFalse(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().shared:
tensor = workspace.FetchBlob(param)
np.testing.assert_allclose(np.array([1.0]), tensor, atol=1e-5)
@unittest.skipIf(not workspace.has_gpu_support, "No GPU support")
def testGPUDense(self):
super(TestMultiPrecisionSgd, self).testGPUDense(core.DataType.FLOAT16)
class TestFtrl(OptimizerTestBase, TestCase):
def build_optimizer(self, model, **kwargs):
self._skip_gpu = True
return build_ftrl(
model,
engine=None,
alpha=1.0,
beta=0.1,
lambda1=0.0,
lambda2=0.0,
**kwargs
)
def check_optimizer(self, optimizer):
self.assertFalse(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
class TestGFtrl(OptimizerTestBase, TestCase):
def testSparse(self):
raise unittest.SkipTest("no sparse support")
def build_optimizer(self, model, **kwargs):
self._skip_gpu = True
return build_gftrl(
model,
engine=None,
alpha=1.0,
beta=0.1,
lambda1=0.0,
lambda2=0.0,
**kwargs
)
def check_optimizer(self, optimizer):
self.assertFalse(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
class TestAdagrad(OptimizerTestBase, LRModificationTestBase, TestCase):
def build_optimizer(self, model, **kwargs):
self._skip_gpu = False
Update caffe2 from facebook 4f527ef46abf (#2234) * [GanH]: two_task_discriminator as titled and adding label smooth * [Dper2] Simplified UI options needed for blob magnitude visualization * [GanH]: fix tags as titled * Added type and shape inference for GatherRange operator This helps with type / shape inference when using this operator in layers. Also just a nice to have in general. * Demonstrate Caffe2 exception handling with StoreHandlerTimeoutError in Python We'd like to catch and recover from certain Caffe2 net exceptions. Use this diff to demonstrate a pattern of registering a pybind exception mapping and catching in Pythonusing caffe2::StoreHandlerTimeoutException. * Bind Gloo IoException to IoError in Python Allow peer failure handling and recovery using an exception based mechanism. This diff registers gloo::IoException with pybind. * [GanH]: add label smoothing to softmax with loss as titled * [C2] Enable LARS in Adagrad and hook it to DPER * [DPER] Don't pass LayerModelHelper in create_trainer_nodes Since we're planning to get rid of it eventually and I want to get access to NetDef only interface ASAP - I'm looking towards removing all references to LMH, where we don't really need them. * fix bugs in LambdaRankNdcgOp the loss and gradient in LambdaRankNdcgOp are incorrect. The loss should be negative log of probs instead of log. * Restrict thread pool on iOS to only big cores Historically, iPhones exposed only one type of cores, and Caffe2 thread pool used all of them. However, iPhone 8/iPhone X exposes 2 big + 4 LITTLE cores. As our thread pool doesn't support work stealing or other forms of load balancing, fast cores end up waiting for the slow ones, and it may be better to restrict execution to only 2 fast cores, like we do on Android. * Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine * make clang happy and get fewer warnings make clang happy and get fewer warnings * [Personalization] Support add_output_schema() in layer_model_helper Problem: Currently the output_schema of sparse_nn can only be set once. https://fburl.com/efth5zer. Solution: For flexibility, we want to add fields to output_schema incrementally. Plan: Wrap the change of `model._output_schema` into a new function `add_output_schema()` for adding additional output_schema. Callsite: The add_output_schema() should be called instead at https://fburl.com/efth5zer Reference: The newly added `add_output_schema()` will be similar to `add_loss()` in https://fburl.com/t2ii8njh
2018-03-12 12:22:59 -07:00
return build_adagrad(model, base_learning_rate=1.0, lars=0.5, **kwargs)
def check_optimizer(self, optimizer):
self.assertFalse(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
class TestRowWiseAdagrad(OptimizerTestBase, TestCase):
def build_optimizer(self, model, **kwargs):
self._skip_gpu = True
return build_adagrad(
model, base_learning_rate=1.0, lars=0.5, rowWise=True, **kwargs
)
def check_optimizer(self, optimizer):
self.assertFalse(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
def testDense(self):
raise unittest.SkipTest("no dense support")
def testGPUDense(self):
raise unittest.SkipTest("no dense support")
class TestWngrad(OptimizerTestBase, LRModificationTestBase, TestCase):
def build_optimizer(self, model, **kwargs):
self._skip_gpu = True
return build_wngrad(model, base_learning_rate=25.0, **kwargs)
def check_optimizer(self, optimizer):
self.assertFalse(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
class TestAdadelta(OptimizerTestBase, LRModificationTestBase, TestCase):
def build_optimizer(self, model, **kwargs):
self._skip_gpu = False
return build_adadelta(model, base_learning_rate=1.0, decay=0.995, **kwargs)
def check_optimizer(self, optimizer):
self.assertFalse(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
class TestAdam(OptimizerTestBase, LRModificationTestBase, TestCase):
def build_optimizer(self, model, **kwargs):
self._skip_gpu = False
return build_adam(model, base_learning_rate=0.1, **kwargs)
def check_optimizer(self, optimizer):
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
self.assertTrue(workspace.HasBlob("optimizer_iteration"))
iteration_tensor = workspace.FetchBlob("optimizer_iteration")
np.testing.assert_allclose(np.array([2000]),
iteration_tensor,
atol=1e-5)
for param in optimizer.get_auxiliary_parameters().shared:
workspace.FetchBlob(param)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
class TestSparseRAdam(OptimizerTestBase, LRModificationTestBase, TestCase):
def build_optimizer(self, model, **kwargs):
self._skip_gpu = True
return build_adam(model, base_learning_rate=0.1, enableRAdam=True, **kwargs)
def check_optimizer(self, optimizer):
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
self.assertTrue(workspace.HasBlob("optimizer_iteration"))
iteration_tensor = workspace.FetchBlob("optimizer_iteration")
np.testing.assert_allclose(np.array([2000]),
iteration_tensor,
atol=1e-5)
for param in optimizer.get_auxiliary_parameters().shared:
workspace.FetchBlob(param)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
class TestYellowFin(OptimizerTestBase, TestCase):
# YellowFin: An automatic tuner for momentum SGD
# (https://arxiv.org/abs/1706.03471)
def build_optimizer(self, model):
self._skip_gpu = False
return build_yellowfin(model, base_learning_rate=0.1)
def check_optimizer(self, optimizer):
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
self.assertTrue(workspace.HasBlob("optimizer_iteration"))
iteration_tensor = workspace.FetchBlob("optimizer_iteration")
np.testing.assert_allclose(np.array([2000]),
iteration_tensor,
atol=1e-5)
for param in optimizer.get_auxiliary_parameters().shared:
workspace.FetchBlob(param)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
def testSparse(self):
raise unittest.SkipTest("no sparse support")
def deb(self, val, beta, i, zero_debias):
if zero_debias:
return val / (1.0 - beta ** i)
else:
return val
def get_lr_mu(self, distance, grad_var, h_min, h_max):
# First tune based on dynamic range
if grad_var == 0:
dr = h_max / h_min
mu = ((np.sqrt(dr) - 1) / (np.sqrt(dr) + 1)) ** 2
lr_min = (1 + np.sqrt(mu)) ** 2 / h_max
return lr_min, mu
p = distance ** 2 * h_min ** 2 / 2 / grad_var
w3 = (-math.sqrt(p * p + 4.0 / 27.0 * p * p * p) - p) / 2.0
w = (1.0 if w3 > 0.0 else -1.0) * math.pow(math.fabs(w3), 1.0 / 3.0)
y = w - p / 3.0 / w
root = y + 1
root = min(root, 1.0 - 1e-6)
dr = h_max / h_min
mu = max(((np.sqrt(dr) - 1) / (np.sqrt(dr) + 1)) ** 2, root**2)
lr_min = (1 - np.sqrt(mu)) ** 2 / h_min
return lr_min, mu
def caffe2_yellowfin(self, zero_debias, grad_coef, n_dim, n_iter, gpu):
caffe2_res = {}
alpha = 1.0
mu = 0.0
beta = 0.999
curv_win_width = 20
epsilon = 1e-6
net = core.Net("net")
param_init_net = core.Net("param_init_net")
workspace.ResetWorkspace()
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
iteration = param_init_net.ConstantFill(
[],
"iteration",
shape=[1],
value=0,
dtype=core.DataType.INT64)
iter_mutex = param_init_net.CreateMutex([], ["iteration_mutex"])
net.AtomicIter([iter_mutex, iteration], [iteration])
pre_grad = param_init_net.ConstantFill(
[],
"pre_grad",
shape=[n_dim],
value=grad_coef
)
if gpu:
iteration = net.CopyCPUToGPU(
[iteration],
"iteration_cpu"
)
iteration_float = net.Cast([iteration], "iteration_float")
grad = net.Mul([pre_grad, iteration_float], "grad", broadcast=True)
w = param_init_net.ConstantFill([], "w", shape=[n_dim], value=0.0)
# a hack to create an object with __dict__
param_info = lambda: None
param_info.blob = w
param_info.grad = grad
optimizer.YellowFinOptimizer(
alpha=alpha,
mu=mu,
beta=beta,
curv_win_width=curv_win_width,
epsilon=epsilon,
zero_debias=zero_debias
)._run(
net,
param_init_net,
param_info
)
workspace.RunNetOnce(param_init_net)
workspace.CreateNet(net, overwrite=True)
for i in range(n_iter):
workspace.RunNet(net)
scalars_memory_blob = workspace.FetchBlob("w_scalars_memory")
g_norm2_avg = scalars_memory_blob[1]
g_norm2_min_avg = scalars_memory_blob[2]
g_norm2_max_avg = scalars_memory_blob[3]
distance_avg = scalars_memory_blob[4]
g_avg_blob = workspace.FetchBlob("w_g_avg")
res_lr = workspace.FetchBlob("w_lr_avg")[0]
res_mu = workspace.FetchBlob("w_mu_avg")[0]
g_deb = self.deb(g_avg_blob, beta, i + 1, zero_debias)
variance = max(
self.deb(g_norm2_avg, beta, i + 1, zero_debias) -
g_deb.dot(g_deb),
epsilon
)
if i > 0:
caffe2_res[i] = {
'h_max': np.exp(self.deb(g_norm2_max_avg,
beta,
i + 1,
zero_debias)),
'h_min': np.exp(self.deb(g_norm2_min_avg,
beta,
i + 1,
zero_debias)),
'var': variance,
'dist': self.deb(distance_avg, beta, i + 1, zero_debias),
'lr': res_lr,
'mu': res_mu
}
return caffe2_res
def numpy_yellowfin(self, zero_debias, grad_coef, n_dim, n_iter, gpu):
numpy_res = {}
target_h_max = 0.0
target_h_min = 0.0
target_g_norm_squared_avg = 0.0
target_g_norm_avg = 0.0
target_g_avg = 0.0
target_dist_avg = 0.0
target_lr = 1.0
target_mu = 0.0
for i in range(n_iter):
grad_val = (i + 1) * grad_coef
target_g_norm_squared_avg = 0.999 * target_g_norm_squared_avg + \
0.001 * np.sum((grad_val * np.ones([n_dim, ])) ** 2)
target_g_norm_avg = 0.999 * target_g_norm_avg + \
0.001 * np.linalg.norm(grad_val * np.ones([n_dim, ]))
target_g_avg = 0.999 * target_g_avg + 0.001 * grad_val
target_h_max = 0.999 * target_h_max + \
0.001 * np.log(grad_val ** 2 * n_dim)
target_h_min = 0.999 * target_h_min + \
0.001 * np.log((max(1, i + 2 - 20) * grad_coef) ** 2 * n_dim)
if zero_debias:
target_var = target_g_norm_squared_avg / \
(1 - 0.999 ** (i + 1)) - \
target_g_avg ** 2 * n_dim / (1 - 0.999 ** (i + 1)) ** 2
else:
target_var = target_g_norm_squared_avg - \
target_g_avg ** 2 * n_dim
target_dist_avg = 0.999 * target_dist_avg + \
0.001 * target_g_norm_avg / target_g_norm_squared_avg
if i > 0:
if zero_debias:
lr, mu = self.get_lr_mu(
target_dist_avg / (1.0 - 0.999 ** (i + 1)),
target_var,
np.exp(target_h_min / (1.0 - 0.999 ** (i + 1))),
np.exp(target_h_max / (1.0 - 0.999 ** (i + 1))))
target_lr = 0.999 * target_lr + 0.001 * lr
target_mu = 0.999 * target_mu + 0.001 * mu
numpy_res[i] = {
'h_max': np.exp(target_h_max / (1 - 0.999 ** (i + 1))),
'h_min': np.exp(target_h_min / (1 - 0.999 ** (i + 1))),
'var': target_var,
'dist': target_dist_avg / (1 - 0.999 ** (i + 1)),
'lr': target_lr,
'mu': target_mu
}
else:
lr, mu = self.get_lr_mu(
target_dist_avg,
target_var,
np.exp(target_h_min),
np.exp(target_h_max))
target_lr = 0.999 * target_lr + 0.001 * lr
target_mu = 0.999 * target_mu + 0.001 * mu
numpy_res[i] = {
'h_max': np.exp(target_h_max),
'h_min': np.exp(target_h_min),
'var': target_var,
'dist': target_dist_avg,
'lr': target_lr,
'mu': target_mu
}
return numpy_res
def compare_yellowfin_models(self,
model0,
model1,
zero_debias,
grad_coef,
n_dim,
n_iter,
gpu):
model0_res = model0(zero_debias, grad_coef, n_dim, n_iter, gpu)
model1_res = model1(zero_debias, grad_coef, n_dim, n_iter, gpu)
assert_equal(len(model0_res), len(model1_res))
for i in range(1, len(model0_res)):
assert_equal(model0_res[i].keys(), model1_res[i].keys())
for feat in model0_res[i].keys():
err_msg = \
'i=' + str(i) + ',\n' + \
'feat=' + feat + ',\n' + \
'grad_coef=' + str(grad_coef) + ',\n' + \
'zero_debias=' + str(zero_debias)
assert_allclose(model0_res[i][feat],
model1_res[i][feat],
rtol=1e-2,
err_msg=err_msg)
@unittest.skip("Results might vary too much. Only for individual use.")
def test_caffe2_cpu_vs_numpy(self):
n_dim = 1000000
n_iter = 50
cpu_device_opt = core.DeviceOption(caffe2_pb2.CPU)
with core.DeviceScope(cpu_device_opt):
for zero_debias, grad_coef in [
(False, 1.0),
(False, 0.1),
(False, 0.01),
(True, 1.0)
]:
self.compare_yellowfin_models(
self.caffe2_yellowfin,
self.numpy_yellowfin,
zero_debias,
grad_coef,
n_dim,
n_iter,
gpu=False
)
@unittest.skip("Results might vary too much. Only for individual use.")
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support")
def test_caffe2_gpu_vs_numpy(self):
n_dim = 1000000
n_iter = 50
gpu_device_opt = core.DeviceOption(workspace.GpuDeviceType, 0)
with core.DeviceScope(gpu_device_opt):
for zero_debias in [False, True]:
for grad_coef in [1.0, 0.1, 0.01]:
self.compare_yellowfin_models(
self.caffe2_yellowfin,
self.numpy_yellowfin,
zero_debias,
grad_coef,
n_dim,
n_iter,
gpu=True
)
class TestRmsProp(OptimizerTestBase, LRModificationTestBase, TestCase):
def build_optimizer(self, model, **kwargs):
self._skip_gpu = False
return build_rms_prop(
model, base_learning_rate=0.1, epsilon=0.1, **kwargs
)
def check_optimizer(self, optimizer):
self.assertFalse(optimizer.get_auxiliary_parameters().shared)
self.assertTrue(optimizer.get_auxiliary_parameters().local)
for param in optimizer.get_auxiliary_parameters().local:
workspace.FetchBlob(param)
def testSparse(self):
raise unittest.SkipTest("no sparse support")
class TestMultiOptimizers(TestCase):
def test_multiple_optimizers(self):
from caffe2.python import brew, core, optimizer
from caffe2.python.model_helper import ModelHelper
model = ModelHelper(name="test")
fc1 = brew.fc(model, 'data', 'fc1', 100, 50)
fc2 = brew.fc(model, fc1, 'fc2', 50, 25)
pred = brew.fc(model, fc2, 'fc3', 25, 10)
(softmax, loss) = model.SoftmaxWithLoss(
[pred, 'label'],
['softmax', 'loss'],
)
model.AddGradientOperators([loss])
param_to_device = optimizer._get_param_to_device(model)
def infer_blob_device(blob_name):
return optimizer.get_param_device(
blob_name, "{}_grad".format(blob_name), param_to_device
)
sgd_1 = optimizer.SgdOptimizer(base_learning_rate=0.1)
sgd_2 = optimizer.SgdOptimizer(base_learning_rate=0.2)
adagrad = optimizer.AdagradOptimizer()
# Check same optimizer share the same learning rate.
with core.DeviceScope(infer_blob_device("fc1_w")):
sgd_1(model.net, model.param_init_net, "fc1_w", "fc1_w_grad")
with core.DeviceScope(infer_blob_device("fc1_b")):
sgd_1(model.net, model.param_init_net, "fc1_b", "fc1_b_grad")
fc1_lr_blobs = []
for op in model.net.Proto().op:
if op.type == 'WeightedSum' and op.input[0] == 'fc1_w' or \
op.input[0] == 'fc1_b':
fc1_lr_blobs.append(op.input[3])
self.assertEqual(fc1_lr_blobs[0], fc1_lr_blobs[1])
# Check different instance of the same optimizer has a different lr.
with core.DeviceScope(infer_blob_device("fc2_w")):
sgd_2(model.net, model.param_init_net, "fc2_w", "fc2_w_grad")
with core.DeviceScope(infer_blob_device("fc2_b")):
sgd_2(model.net, model.param_init_net, "fc2_b", "fc2_b_grad")
fc2_lr_blobs = []
for op in model.net.Proto().op:
if op.type == 'WeightedSum' and op.input[0] == 'fc2_w' or \
op.input[0] == 'fc2_b':
self.assertTrue(op.input[3] not in fc1_lr_blobs)
fc2_lr_blobs.append(op.input[3])
self.assertEqual(fc2_lr_blobs[0], fc2_lr_blobs[1])
# Check different optimizer type case
with core.DeviceScope(infer_blob_device("fc3_w")):
adagrad(model.net, model.param_init_net, "fc3_w", "fc3_w_grad")
with core.DeviceScope(infer_blob_device("fc3_b")):
adagrad(model.net, model.param_init_net, "fc3_b", "fc3_b_grad")
fc3_lr_blobs = []
for op in model.net.Proto().op:
if op.type == 'Adagrad' and op.input[0] == 'fc3_w' or \
op.input[0] == 'fc3_b':
self.assertTrue(op.input[3] not in fc2_lr_blobs)
self.assertTrue(op.input[3] not in fc1_lr_blobs)
fc3_lr_blobs.append(op.input[3])
self.assertEqual(fc3_lr_blobs[0], fc3_lr_blobs[1])
class TestWeightDecay(TestCase):
def test_weight_decay(self):
from caffe2.python import brew
from caffe2.python.model_helper import ModelHelper
model = ModelHelper(name="test", arg_scope={'order': 'NCHW'})
cnv = brew.conv(model, 'data', 'cnv', 32, 32, 4)
a = brew.fc(model, cnv, 'a', 100, 200)
pred = brew.fc(model, a, 'b', 200, 5)
(softmax, loss) = model.SoftmaxWithLoss(
[pred, 'label'],
['softmax', 'loss'],
)
model.AddGradientOperators([loss])
add_weight_decay(model, weight_decay=1e-4)
build_sgd(model, 0.11)
expected_weight_grad = {'b_w_grad', 'a_w_grad', 'cnv_w_grad'}
# Check the proto that all weights are decayed and not non-weights
# are decayed.
for op in model.net.Proto().op:
if op.type == 'WeightedSum' and 'wd_0_0' in op.input:
if op.output[0] not in expected_weight_grad:
print(
"Unexpected param for weight_decay: {}".
format(op.output[0])
)
self.assertTrue(op.output[0] in expected_weight_grad)
expected_weight_grad.remove(op.output[0])
self.assertEqual(
expected_weight_grad,
set(),
"Not all weights were decayed: {}".format(expected_weight_grad)
)
class TestOptimizerContext(TestCase):
def test_optimizer_context(self):
from caffe2.python import brew, optimizer
from caffe2.python.model_helper import ModelHelper
model = ModelHelper(name="test", arg_scope={'order': 'NCHW'})
count = optimizer._optimizer_instance_count['SgdOptimizer']
cnv_optim = SgdOptimizer(0.15)
weight_optim = SgdOptimizer(0.2)
bias_optim = SgdOptimizer(0.1)
with UseOptimizer(cnv_optim):
cnv = brew.conv(model, 'data', 'cnv', 32, 32, 4)
with UseOptimizer({'WEIGHT': weight_optim, 'BIAS': bias_optim}):
a = brew.fc(model, cnv, 'a', 100, 200)
pred = brew.fc(model, a, 'b', 200, 5)
(softmax, loss) = model.SoftmaxWithLoss(
[pred, 'label'],
['softmax', 'loss'],
)
model.AddGradientOperators([loss])
add_weight_decay(model, weight_decay=1e-4)
# use the following optimizer if none specified in param_info
build_sgd(model, 0.11)
expected_weight_grad = {'b_w_grad', 'a_w_grad', 'cnv_w_grad'}
expected_learning_rate = {
"SgdOptimizer_{}_lr_cpu".format(count): -0.15,
"SgdOptimizer_{}_lr_cpu".format(count + 1): -0.2,
"SgdOptimizer_{}_lr_cpu".format(count + 2): -0.1,
"SgdOptimizer_{}_lr_cpu".format(count + 3): -0.11
}
for op in model.net.Proto().op:
# Check the proto that all weights are decayed and not non-weights
# are decayed.
if op.type == 'WeightedSum' and 'wd_0_0' in op.input:
if op.output[0] not in expected_weight_grad:
print(
"Unexpected param for weight_decay: {}".
format(op.output[0])
)
self.assertTrue(op.output[0] in expected_weight_grad)
expected_weight_grad.remove(op.output[0])
# Check the learning rate for each parameter
if op.type == 'LearningRate':
val = 0
for arg in op.arg:
if arg.name == 'base_lr':
val = arg.f
self.assertAlmostEqual(
val,
expected_learning_rate[op.output[0]]
)
self.assertEqual(
expected_weight_grad,
set(),
"Not all weights were decayed: {}".format(expected_weight_grad)
)