mirror of
https://github.com/zebrajr/opencv.git
synced 2026-01-15 12:15:17 +00:00
Add Java and Python code for the following imgproc tutorials: Finding contours in your image, Convex Hull, Creating Bounding boxes and circles for contours, Creating Bounding rotated boxes and ellipses for contours, Image Moments, Point Polygon Test.
This commit is contained in:
@@ -0,0 +1,82 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
rng.seed(12345)
|
||||
|
||||
def thresh_callback(val):
|
||||
threshold = val
|
||||
|
||||
## [Canny]
|
||||
# Detect edges using Canny
|
||||
canny_output = cv.Canny(src_gray, threshold, threshold * 2)
|
||||
## [Canny]
|
||||
|
||||
## [findContours]
|
||||
# Find contours
|
||||
_, contours, _ = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
## [findContours]
|
||||
|
||||
## [allthework]
|
||||
# Approximate contours to polygons + get bounding rects and circles
|
||||
contours_poly = [None]*len(contours)
|
||||
boundRect = [None]*len(contours)
|
||||
centers = [None]*len(contours)
|
||||
radius = [None]*len(contours)
|
||||
for i in range(len(contours)):
|
||||
contours_poly[i] = cv.approxPolyDP(contours[i], 3, True)
|
||||
boundRect[i] = cv.boundingRect(contours_poly[i])
|
||||
centers[i], radius[i] = cv.minEnclosingCircle(contours_poly[i])
|
||||
## [allthework]
|
||||
|
||||
## [zeroMat]
|
||||
drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
|
||||
## [zeroMat]
|
||||
|
||||
## [forContour]
|
||||
# Draw polygonal contour + bonding rects + circles
|
||||
for i in range(len(contours)):
|
||||
color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
|
||||
cv.drawContours(drawing, contours_poly, i, color)
|
||||
cv.rectangle(drawing, (int(boundRect[i][0]), int(boundRect[i][1])), \
|
||||
(int(boundRect[i][0]+boundRect[i][2]), int(boundRect[i][1]+boundRect[i][3])), color, 2)
|
||||
cv.circle(drawing, (int(centers[i][0]), int(centers[i][1])), int(radius[i]), color, 2)
|
||||
## [forContour]
|
||||
|
||||
## [showDrawings]
|
||||
# Show in a window
|
||||
cv.imshow('Contours', drawing)
|
||||
## [showDrawings]
|
||||
|
||||
## [setup]
|
||||
# Load source image
|
||||
parser = argparse.ArgumentParser(description='Code for Creating Bounding boxes and circles for contours tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='../data/stuff.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(args.input)
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
# Convert image to gray and blur it
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
src_gray = cv.blur(src_gray, (3,3))
|
||||
## [setup]
|
||||
|
||||
## [createWindow]
|
||||
# Create Window
|
||||
source_window = 'Source'
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, src)
|
||||
## [createWindow]
|
||||
## [trackbar]
|
||||
max_thresh = 255
|
||||
thresh = 100 # initial threshold
|
||||
cv.createTrackbar('Canny thresh:', source_window, thresh, max_thresh, thresh_callback)
|
||||
thresh_callback(thresh)
|
||||
## [trackbar]
|
||||
|
||||
cv.waitKey()
|
||||
@@ -0,0 +1,82 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
rng.seed(12345)
|
||||
|
||||
def thresh_callback(val):
|
||||
threshold = val
|
||||
|
||||
## [Canny]
|
||||
# Detect edges using Canny
|
||||
canny_output = cv.Canny(src_gray, threshold, threshold * 2)
|
||||
## [Canny]
|
||||
|
||||
## [findContours]
|
||||
# Find contours
|
||||
_, contours, _ = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
## [findContours]
|
||||
|
||||
# Find the rotated rectangles and ellipses for each contour
|
||||
minRect = [None]*len(contours)
|
||||
minEllipse = [None]*len(contours)
|
||||
for i in range(len(contours)):
|
||||
minRect[i] = cv.minAreaRect(contours[i])
|
||||
if contours[i].shape[0] > 5:
|
||||
minEllipse[i] = cv.fitEllipse(contours[i])
|
||||
|
||||
# Draw contours + rotated rects + ellipses
|
||||
## [zeroMat]
|
||||
drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
|
||||
## [zeroMat]
|
||||
## [forContour]
|
||||
for i in range(len(contours)):
|
||||
color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
|
||||
# contour
|
||||
cv.drawContours(drawing, contours, i, color)
|
||||
# ellipse
|
||||
if contours[i].shape[0] > 5:
|
||||
cv.ellipse(drawing, minEllipse[i], color, 2)
|
||||
# rotated rectangle
|
||||
box = cv.boxPoints(minRect[i])
|
||||
box = np.intp(box) #np.intp: Integer used for indexing (same as C ssize_t; normally either int32 or int64)
|
||||
cv.drawContours(drawing, [box], 0, color)
|
||||
## [forContour]
|
||||
|
||||
## [showDrawings]
|
||||
# Show in a window
|
||||
cv.imshow('Contours', drawing)
|
||||
## [showDrawings]
|
||||
|
||||
## [setup]
|
||||
# Load source image
|
||||
parser = argparse.ArgumentParser(description='Code for Creating Bounding rotated boxes and ellipses for contours tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='../data/stuff.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(args.input)
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
# Convert image to gray and blur it
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
src_gray = cv.blur(src_gray, (3,3))
|
||||
## [setup]
|
||||
|
||||
## [createWindow]
|
||||
# Create Window
|
||||
source_window = 'Source'
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, src)
|
||||
## [createWindow]
|
||||
## [trackbar]
|
||||
max_thresh = 255
|
||||
thresh = 100 # initial threshold
|
||||
cv.createTrackbar('Canny Thresh:', source_window, thresh, max_thresh, thresh_callback)
|
||||
thresh_callback(thresh)
|
||||
## [trackbar]
|
||||
|
||||
cv.waitKey()
|
||||
@@ -0,0 +1,50 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
rng.seed(12345)
|
||||
|
||||
def thresh_callback(val):
|
||||
threshold = val
|
||||
|
||||
# Detect edges using Canny
|
||||
canny_output = cv.Canny(src_gray, threshold, threshold * 2)
|
||||
|
||||
# Find contours
|
||||
_, contours, hierarchy = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
# Draw contours
|
||||
drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
|
||||
for i in range(len(contours)):
|
||||
color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
|
||||
cv.drawContours(drawing, contours, i, color, 2, cv.LINE_8, hierarchy, 0)
|
||||
|
||||
# Show in a window
|
||||
cv.imshow('Contours', drawing)
|
||||
|
||||
# Load source image
|
||||
parser = argparse.ArgumentParser(description='Code for Finding contours in your image tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='../data/HappyFish.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(args.input)
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
# Convert image to gray and blur it
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
src_gray = cv.blur(src_gray, (3,3))
|
||||
|
||||
# Create Window
|
||||
source_window = 'Source'
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, src)
|
||||
max_thresh = 255
|
||||
thresh = 100 # initial threshold
|
||||
cv.createTrackbar('Canny Thresh:', source_window, thresh, max_thresh, thresh_callback)
|
||||
thresh_callback(thresh)
|
||||
|
||||
cv.waitKey()
|
||||
@@ -0,0 +1,57 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
rng.seed(12345)
|
||||
|
||||
def thresh_callback(val):
|
||||
threshold = val
|
||||
|
||||
# Detect edges using Canny
|
||||
canny_output = cv.Canny(src_gray, threshold, threshold * 2)
|
||||
|
||||
# Find contours
|
||||
_, contours, _ = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
# Find the convex hull object for each contour
|
||||
hull_list = []
|
||||
for i in range(len(contours)):
|
||||
hull = cv.convexHull(contours[i])
|
||||
hull_list.append(hull)
|
||||
|
||||
# Draw contours + hull results
|
||||
drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
|
||||
for i in range(len(contours)):
|
||||
color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
|
||||
cv.drawContours(drawing, contours, i, color)
|
||||
cv.drawContours(drawing, hull_list, i, color)
|
||||
|
||||
# Show in a window
|
||||
cv.imshow('Contours', drawing)
|
||||
|
||||
# Load source image
|
||||
parser = argparse.ArgumentParser(description='Code for Convex Hull tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='../data/stuff.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(args.input)
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
# Convert image to gray and blur it
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
src_gray = cv.blur(src_gray, (3,3))
|
||||
|
||||
# Create Window
|
||||
source_window = 'Source'
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, src)
|
||||
max_thresh = 255
|
||||
thresh = 100 # initial threshold
|
||||
cv.createTrackbar('Canny thresh:', source_window, thresh, max_thresh, thresh_callback)
|
||||
thresh_callback(thresh)
|
||||
|
||||
cv.waitKey()
|
||||
@@ -0,0 +1,83 @@
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
import random as rng
|
||||
|
||||
rng.seed(12345)
|
||||
|
||||
def thresh_callback(val):
|
||||
threshold = val
|
||||
|
||||
## [Canny]
|
||||
# Detect edges using Canny
|
||||
canny_output = cv.Canny(src_gray, threshold, threshold * 2)
|
||||
## [Canny]
|
||||
|
||||
## [findContours]
|
||||
# Find contours
|
||||
_, contours, _ = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
## [findContours]
|
||||
|
||||
# Get the moments
|
||||
mu = [None]*len(contours)
|
||||
for i in range(len(contours)):
|
||||
mu[i] = cv.moments(contours[i])
|
||||
|
||||
# Get the mass centers
|
||||
mc = [None]*len(contours)
|
||||
for i in range(len(contours)):
|
||||
# add 1e-5 to avoid division by zero
|
||||
mc[i] = (mu[i]['m10'] / (mu[i]['m00'] + 1e-5), mu[i]['m01'] / (mu[i]['m00'] + 1e-5))
|
||||
|
||||
# Draw contours
|
||||
## [zeroMat]
|
||||
drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
|
||||
## [zeroMat]
|
||||
## [forContour]
|
||||
for i in range(len(contours)):
|
||||
color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
|
||||
cv.drawContours(drawing, contours, i, color, 2)
|
||||
cv.circle(drawing, (int(mc[i][0]), int(mc[i][1])), 4, color, -1)
|
||||
## [forContour]
|
||||
|
||||
## [showDrawings]
|
||||
# Show in a window
|
||||
cv.imshow('Contours', drawing)
|
||||
## [showDrawings]
|
||||
|
||||
# Calculate the area with the moments 00 and compare with the result of the OpenCV function
|
||||
for i in range(len(contours)):
|
||||
print(' * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f' % (i, mu[i]['m00'], cv.contourArea(contours[i]), cv.arcLength(contours[i], True)))
|
||||
|
||||
## [setup]
|
||||
# Load source image
|
||||
parser = argparse.ArgumentParser(description='Code for Image Moments tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='../data/stuff.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(args.input)
|
||||
if src is None:
|
||||
print('Could not open or find the image:', args.input)
|
||||
exit(0)
|
||||
|
||||
# Convert image to gray and blur it
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
src_gray = cv.blur(src_gray, (3,3))
|
||||
## [setup]
|
||||
|
||||
## [createWindow]
|
||||
# Create Window
|
||||
source_window = 'Source'
|
||||
cv.namedWindow(source_window)
|
||||
cv.imshow(source_window, src)
|
||||
## [createWindow]
|
||||
## [trackbar]
|
||||
max_thresh = 255
|
||||
thresh = 100 # initial threshold
|
||||
cv.createTrackbar('Canny Thresh:', source_window, thresh, max_thresh, thresh_callback)
|
||||
thresh_callback(thresh)
|
||||
## [trackbar]
|
||||
|
||||
cv.waitKey()
|
||||
@@ -0,0 +1,51 @@
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
# Create an image
|
||||
r = 100
|
||||
src = np.zeros((4*r, 4*r), dtype=np.uint8)
|
||||
|
||||
# Create a sequence of points to make a contour
|
||||
vert = [None]*6
|
||||
vert[0] = (3*r//2, int(1.34*r))
|
||||
vert[1] = (1*r, 2*r)
|
||||
vert[2] = (3*r//2, int(2.866*r))
|
||||
vert[3] = (5*r//2, int(2.866*r))
|
||||
vert[4] = (3*r, 2*r)
|
||||
vert[5] = (5*r//2, int(1.34*r))
|
||||
|
||||
# Draw it in src
|
||||
for i in range(6):
|
||||
cv.line(src, vert[i], vert[(i+1)%6], ( 255 ), 3)
|
||||
|
||||
# Get the contours
|
||||
_, contours, _ = cv.findContours(src, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
# Calculate the distances to the contour
|
||||
raw_dist = np.empty(src.shape, dtype=np.float32)
|
||||
for i in range(src.shape[0]):
|
||||
for j in range(src.shape[1]):
|
||||
raw_dist[i,j] = cv.pointPolygonTest(contours[0], (j,i), True)
|
||||
|
||||
minVal, maxVal, _, _ = cv.minMaxLoc(raw_dist)
|
||||
minVal = abs(minVal)
|
||||
maxVal = abs(maxVal)
|
||||
|
||||
# Depicting the distances graphically
|
||||
drawing = np.zeros((src.shape[0], src.shape[1], 3), dtype=np.uint8)
|
||||
for i in range(src.shape[0]):
|
||||
for j in range(src.shape[1]):
|
||||
if raw_dist[i,j] < 0:
|
||||
drawing[i,j,0] = 255 - abs(raw_dist[i,j]) * 255 / minVal
|
||||
elif raw_dist[i,j] > 0:
|
||||
drawing[i,j,2] = 255 - raw_dist[i,j] * 255 / maxVal
|
||||
else:
|
||||
drawing[i,j,0] = 255
|
||||
drawing[i,j,1] = 255
|
||||
drawing[i,j,2] = 255
|
||||
|
||||
cv.imshow('Source', src)
|
||||
cv.imshow('Distance', drawing)
|
||||
cv.waitKey()
|
||||
Reference in New Issue
Block a user