Add Java and Python code for the following imgproc tutorials: Finding contours in your image, Convex Hull, Creating Bounding boxes and circles for contours, Creating Bounding rotated boxes and ellipses for contours, Image Moments, Point Polygon Test.

This commit is contained in:
catree
2018-06-10 23:57:11 +02:00
parent 93f2fd396b
commit a11ef2650e
25 changed files with 1865 additions and 348 deletions

View File

@@ -12,9 +12,8 @@
using namespace cv;
using namespace std;
Mat src; Mat src_gray;
Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
/// Function header
@@ -25,34 +24,31 @@ void thresh_callback(int, void* );
*/
int main( int argc, char** argv )
{
/// Load source image
String imageName("../data/happyfish.jpg"); // by default
if (argc > 1)
{
imageName = argv[1];
}
src = imread(imageName, IMREAD_COLOR);
/// Load source image
CommandLineParser parser( argc, argv, "{@input | ../data/HappyFish.jpg | input image}" );
Mat src = imread( parser.get<String>( "@input" ) );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
if (src.empty())
{
cerr << "No image supplied ..." << endl;
return -1;
}
/// Convert image to gray and blur it
cvtColor( src, src_gray, COLOR_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
/// Convert image to gray and blur it
cvtColor( src, src_gray, COLOR_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
/// Create Window
const char* source_window = "Source";
namedWindow( source_window );
imshow( source_window, src );
/// Create Window
const char* source_window = "Source";
namedWindow( source_window, WINDOW_AUTOSIZE );
imshow( source_window, src );
const int max_thresh = 255;
createTrackbar( "Canny thresh:", source_window, &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
createTrackbar( " Canny thresh:", "Source", &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
waitKey(0);
return(0);
waitKey();
return 0;
}
/**
@@ -60,24 +56,23 @@ int main( int argc, char** argv )
*/
void thresh_callback(int, void* )
{
Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
/// Detect edges using Canny
Mat canny_output;
Canny( src_gray, canny_output, thresh, thresh*2 );
/// Detect edges using canny
Canny( src_gray, canny_output, thresh, thresh*2, 3 );
/// Find contours
findContours( canny_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0) );
/// Find contours
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours( canny_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE );
/// Draw contours
Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
for( size_t i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing, contours, (int)i, color, 2, 8, hierarchy, 0, Point() );
}
/// Draw contours
Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
for( size_t i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 256), rng.uniform(0,256), rng.uniform(0,256) );
drawContours( drawing, contours, (int)i, color, 2, LINE_8, hierarchy, 0 );
}
/// Show in a window
namedWindow( "Contours", WINDOW_AUTOSIZE );
imshow( "Contours", drawing );
/// Show in a window
imshow( "Contours", drawing );
}

View File

@@ -12,9 +12,8 @@
using namespace cv;
using namespace std;
Mat src; Mat src_gray;
Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
/// Function header
@@ -25,42 +24,37 @@ void thresh_callback(int, void* );
*/
int main( int argc, char** argv )
{
//![setup]
/// Load source image
CommandLineParser parser( argc, argv, "{@input | ../data/stuff.jpg | input image}" );
src = imread( parser.get<String>( "@input" ), IMREAD_COLOR );
if( src.empty() )
//! [setup]
/// Load source image
CommandLineParser parser( argc, argv, "{@input | ../data/stuff.jpg | input image}" );
Mat src = imread( parser.get<String>( "@input" ) );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "usage: " << argv[0] << " <Input image>" << endl;
return -1;
cout << "Could not open or find the image!\n" << endl;
cout << "usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
/// Convert image to gray and blur it
cvtColor( src, src_gray, COLOR_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
//![setup]
/// Convert image to gray and blur it
cvtColor( src, src_gray, COLOR_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
//! [setup]
//![createWindow]
/// Create Window
const char* source_window = "Source";
namedWindow( source_window, WINDOW_AUTOSIZE );
imshow( source_window, src );
//![createWindow]
//! [createWindow]
/// Create Window
const char* source_window = "Source";
namedWindow( source_window );
imshow( source_window, src );
//! [createWindow]
//![taskbar]
createTrackbar( " Threshold:", "Source", &thresh, max_thresh, thresh_callback );
//![taskbar]
//! [trackbar]
const int max_thresh = 255;
createTrackbar( "Canny thresh:", source_window, &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
//! [trackbar]
//![callback00]
thresh_callback( 0, 0 );
//![callback00]
//![waitForIt]
waitKey(0);
//![waitForIt]
return(0);
waitKey();
return 0;
}
/**
@@ -68,53 +62,50 @@ int main( int argc, char** argv )
*/
void thresh_callback(int, void* )
{
Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
//! [Canny]
/// Detect edges using Canny
Mat canny_output;
Canny( src_gray, canny_output, thresh, thresh*2 );
//! [Canny]
//![threshold]
/// Detect edges using Threshold
threshold( src_gray, threshold_output, thresh, 255, THRESH_BINARY );
//![threshold]
//! [findContours]
/// Find contours
vector<vector<Point> > contours;
findContours( canny_output, contours, RETR_TREE, CHAIN_APPROX_SIMPLE );
//! [findContours]
//![findContours]
/// Find contours
findContours( threshold_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0) );
//![findContours]
//! [allthework]
/// Approximate contours to polygons + get bounding rects and circles
vector<vector<Point> > contours_poly( contours.size() );
vector<Rect> boundRect( contours.size() );
vector<Point2f>centers( contours.size() );
vector<float>radius( contours.size() );
/// Approximate contours to polygons + get bounding rects and circles
vector<vector<Point> > contours_poly( contours.size() );
vector<Rect> boundRect( contours.size() );
vector<Point2f>center( contours.size() );
vector<float>radius( contours.size() );
for( size_t i = 0; i < contours.size(); i++ )
{
approxPolyDP( contours[i], contours_poly[i], 3, true );
boundRect[i] = boundingRect( contours_poly[i] );
minEnclosingCircle( contours_poly[i], centers[i], radius[i] );
}
//! [allthework]
//![allthework]
for( size_t i = 0; i < contours.size(); i++ )
{
approxPolyDP( contours[i], contours_poly[i], 3, true );
boundRect[i] = boundingRect( contours_poly[i] );
minEnclosingCircle( contours_poly[i], center[i], radius[i] );
}
//![allthework]
//! [zeroMat]
Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
//! [zeroMat]
//![zeroMat]
/// Draw polygonal contour + bonding rects + circles
Mat drawing = Mat::zeros( threshold_output.size(), CV_8UC3 );
//![zeroMat]
//! [forContour]
/// Draw polygonal contour + bonding rects + circles
for( size_t i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 256), rng.uniform(0,256), rng.uniform(0,256) );
drawContours( drawing, contours_poly, (int)i, color );
rectangle( drawing, boundRect[i].tl(), boundRect[i].br(), color, 2 );
circle( drawing, centers[i], (int)radius[i], color, 2 );
}
//! [forContour]
//![forContour]
for( size_t i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing, contours_poly, (int)i, color, 1, 8, vector<Vec4i>(), 0, Point() );
rectangle( drawing, boundRect[i].tl(), boundRect[i].br(), color, 2, 8, 0 );
circle( drawing, center[i], (int)radius[i], color, 2, 8, 0 );
}
//![forContour]
//![showDrawings]
/// Show in a window
namedWindow( "Contours", WINDOW_AUTOSIZE );
imshow( "Contours", drawing );
//![showDrawings]
//! [showDrawings]
/// Show in a window
imshow( "Contours", drawing );
//! [showDrawings]
}

View File

@@ -12,9 +12,8 @@
using namespace cv;
using namespace std;
Mat src; Mat src_gray;
Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
/// Function header
@@ -25,30 +24,31 @@ void thresh_callback(int, void* );
*/
int main( int argc, char** argv )
{
/// Load source image and convert it to gray
CommandLineParser parser( argc, argv, "{@input | ../data/stuff.jpg | input image}" );
src = imread( parser.get<String>( "@input" ), IMREAD_COLOR );
if( src.empty() )
/// Load source image and convert it to gray
CommandLineParser parser( argc, argv, "{@input | ../data/stuff.jpg | input image}" );
Mat src = imread( parser.get<String>( "@input" ) );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
/// Convert image to gray and blur it
cvtColor( src, src_gray, COLOR_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
/// Convert image to gray and blur it
cvtColor( src, src_gray, COLOR_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
/// Create Window
const char* source_window = "Source";
namedWindow( source_window, WINDOW_AUTOSIZE );
imshow( source_window, src );
/// Create Window
const char* source_window = "Source";
namedWindow( source_window );
imshow( source_window, src );
createTrackbar( " Threshold:", "Source", &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
const int max_thresh = 255;
createTrackbar( "Canny thresh:", source_window, &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
waitKey(0);
return(0);
waitKey();
return 0;
}
/**
@@ -56,41 +56,43 @@ int main( int argc, char** argv )
*/
void thresh_callback(int, void* )
{
Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
/// Detect edges using Canny
Mat canny_output;
Canny( src_gray, canny_output, thresh, thresh*2 );
/// Find contours
vector<vector<Point> > contours;
findContours( canny_output, contours, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0) );
/// Detect edges using Threshold
threshold( src_gray, threshold_output, thresh, 255, THRESH_BINARY );
/// Find contours
findContours( threshold_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0) );
/// Find the rotated rectangles and ellipses for each contour
vector<RotatedRect> minRect( contours.size() );
vector<RotatedRect> minEllipse( contours.size() );
for( size_t i = 0; i < contours.size(); i++ )
{
minRect[i] = minAreaRect( contours[i] );
if( contours[i].size() > 5 )
{
minEllipse[i] = fitEllipse( contours[i] );
}
}
/// Find the rotated rectangles and ellipses for each contour
vector<RotatedRect> minRect( contours.size() );
vector<RotatedRect> minEllipse( contours.size() );
/// Draw contours + rotated rects + ellipses
Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
for( size_t i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 256), rng.uniform(0,256), rng.uniform(0,256) );
// contour
drawContours( drawing, contours, (int)i, color );
// ellipse
ellipse( drawing, minEllipse[i], color, 2 );
// rotated rectangle
Point2f rect_points[4];
minRect[i].points( rect_points );
for ( int j = 0; j < 4; j++ )
{
line( drawing, rect_points[j], rect_points[(j+1)%4], color );
}
}
for( size_t i = 0; i < contours.size(); i++ )
{ minRect[i] = minAreaRect( contours[i] );
if( contours[i].size() > 5 )
{ minEllipse[i] = fitEllipse( contours[i] ); }
}
/// Draw contours + rotated rects + ellipses
Mat drawing = Mat::zeros( threshold_output.size(), CV_8UC3 );
for( size_t i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
// contour
drawContours( drawing, contours, (int)i, color, 1, 8, vector<Vec4i>(), 0, Point() );
// ellipse
ellipse( drawing, minEllipse[i], color, 2, 8 );
// rotated rectangle
Point2f rect_points[4]; minRect[i].points( rect_points );
for( int j = 0; j < 4; j++ )
line( drawing, rect_points[j], rect_points[(j+1)%4], color, 1, 8 );
}
/// Show in a window
namedWindow( "Contours", WINDOW_AUTOSIZE );
imshow( "Contours", drawing );
/// Show in a window
imshow( "Contours", drawing );
}

View File

@@ -12,9 +12,8 @@
using namespace cv;
using namespace std;
Mat src; Mat src_gray;
Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
/// Function header
@@ -25,30 +24,31 @@ void thresh_callback(int, void* );
*/
int main( int argc, char** argv )
{
/// Load source image and convert it to gray
CommandLineParser parser( argc, argv, "{@input | ../data/stuff.jpg | input image}" );
src = imread( parser.get<String>( "@input" ), IMREAD_COLOR );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
/// Load source image and convert it to gray
CommandLineParser parser( argc, argv, "{@input | ../data/stuff.jpg | input image}" );
Mat src = imread( parser.get<String>( "@input" ) );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
/// Convert image to gray and blur it
cvtColor( src, src_gray, COLOR_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
/// Convert image to gray and blur it
cvtColor( src, src_gray, COLOR_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
/// Create Window
const char* source_window = "Source";
namedWindow( source_window, WINDOW_AUTOSIZE );
imshow( source_window, src );
/// Create Window
const char* source_window = "Source";
namedWindow( source_window );
imshow( source_window, src );
createTrackbar( " Threshold:", "Source", &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
const int max_thresh = 255;
createTrackbar( "Canny thresh:", source_window, &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
waitKey(0);
return(0);
waitKey();
return 0;
}
/**
@@ -56,31 +56,30 @@ int main( int argc, char** argv )
*/
void thresh_callback(int, void* )
{
Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
/// Detect edges using Canny
Mat canny_output;
Canny( src_gray, canny_output, thresh, thresh*2 );
/// Detect edges using Threshold
threshold( src_gray, threshold_output, thresh, 255, THRESH_BINARY );
/// Find contours
vector<vector<Point> > contours;
findContours( canny_output, contours, RETR_TREE, CHAIN_APPROX_SIMPLE );
/// Find contours
findContours( threshold_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0) );
/// Find the convex hull object for each contour
vector<vector<Point> >hull( contours.size() );
for( size_t i = 0; i < contours.size(); i++ )
{
convexHull( contours[i], hull[i] );
}
/// Find the convex hull object for each contour
vector<vector<Point> >hull( contours.size() );
for( size_t i = 0; i < contours.size(); i++ )
{ convexHull( contours[i], hull[i], false ); }
/// Draw contours + hull results
Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
for( size_t i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 256), rng.uniform(0,256), rng.uniform(0,256) );
drawContours( drawing, contours, (int)i, color );
drawContours( drawing, hull, (int)i, color );
}
/// Draw contours + hull results
Mat drawing = Mat::zeros( threshold_output.size(), CV_8UC3 );
for( size_t i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing, contours, (int)i, color, 1, 8, vector<Vec4i>(), 0, Point() );
drawContours( drawing, hull, (int)i, color, 1, 8, vector<Vec4i>(), 0, Point() );
}
/// Show in a window
namedWindow( "Hull demo", WINDOW_AUTOSIZE );
imshow( "Hull demo", drawing );
/// Show in a window
imshow( "Hull demo", drawing );
}

View File

@@ -8,13 +8,13 @@
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <iomanip>
using namespace cv;
using namespace std;
Mat src; Mat src_gray;
Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
/// Function header
@@ -25,31 +25,32 @@ void thresh_callback(int, void* );
*/
int main( int argc, char** argv )
{
/// Load source image and convert it to gray
CommandLineParser parser( argc, argv, "{@input | ../data/stuff.jpg | input image}" );
src = imread( parser.get<String>( "@input" ), IMREAD_COLOR );
/// Load source image
CommandLineParser parser( argc, argv, "{@input | ../data/stuff.jpg | input image}" );
Mat src = imread( parser.get<String>( "@input" ) );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "usage: " << argv[0] << " <Input image>" << endl;
exit(0);
}
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
/// Convert image to gray and blur it
cvtColor( src, src_gray, COLOR_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
/// Convert image to gray and blur it
cvtColor( src, src_gray, COLOR_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
/// Create Window
const char* source_window = "Source";
namedWindow( source_window, WINDOW_AUTOSIZE );
imshow( source_window, src );
/// Create Window
const char* source_window = "Source";
namedWindow( source_window );
imshow( source_window, src );
createTrackbar( " Canny thresh:", "Source", &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
const int max_thresh = 255;
createTrackbar( "Canny thresh:", source_window, &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
waitKey(0);
return(0);
waitKey();
return 0;
}
/**
@@ -57,44 +58,47 @@ int main( int argc, char** argv )
*/
void thresh_callback(int, void* )
{
Mat canny_output;
vector<vector<Point> > contours;
/// Detect edges using canny
Mat canny_output;
Canny( src_gray, canny_output, thresh, thresh*2, 3 );
/// Find contours
vector<vector<Point> > contours;
findContours( canny_output, contours, RETR_TREE, CHAIN_APPROX_SIMPLE );
/// Detect edges using canny
Canny( src_gray, canny_output, thresh, thresh*2, 3 );
/// Find contours
findContours( canny_output, contours, RETR_TREE, CHAIN_APPROX_SIMPLE );
/// Get the moments
vector<Moments> mu(contours.size() );
for( size_t i = 0; i < contours.size(); i++ )
{
mu[i] = moments( contours[i] );
}
/// Get the moments
vector<Moments> mu(contours.size() );
for( size_t i = 0; i < contours.size(); i++ )
{ mu[i] = moments( contours[i], false ); }
/// Get the mass centers
vector<Point2f> mc( contours.size() );
for( size_t i = 0; i < contours.size(); i++ )
{
//add 1e-5 to avoid division by zero
mc[i] = Point2f( static_cast<float>(mu[i].m10 / (mu[i].m00 + 1e-5)),
static_cast<float>(mu[i].m01 / (mu[i].m00 + 1e-5)) );
cout << "mc[" << i << "]=" << mc[i] << endl;
}
/// Get the mass centers:
vector<Point2f> mc( contours.size() );
for( size_t i = 0; i < contours.size(); i++ )
{ mc[i] = Point2f( static_cast<float>(mu[i].m10/mu[i].m00) , static_cast<float>(mu[i].m01/mu[i].m00) ); }
/// Draw contours
Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
for( size_t i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 256), rng.uniform(0,256), rng.uniform(0,256) );
drawContours( drawing, contours, (int)i, color, 2 );
circle( drawing, mc[i], 4, color, -1 );
}
/// Draw contours
Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
for( size_t i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing, contours, (int)i, color, 2, LINE_8 );
circle( drawing, mc[i], 4, color, -1, 8, 0 );
}
/// Show in a window
imshow( "Contours", drawing );
/// Show in a window
namedWindow( "Contours", WINDOW_AUTOSIZE );
imshow( "Contours", drawing );
/// Calculate the area with the moments 00 and compare with the result of the OpenCV function
printf("\t Info: Area and Contour Length \n");
for( size_t i = 0; i< contours.size(); i++ )
{
printf(" * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f \n", (int)i, mu[i].m00, contourArea(contours[i]), arcLength( contours[i], true ) );
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing, contours, (int)i, color, 2, LINE_8 );
circle( drawing, mc[i], 4, color, -1, 8, 0 );
}
/// Calculate the area with the moments 00 and compare with the result of the OpenCV function
cout << "\t Info: Area and Contour Length \n";
for( size_t i = 0; i < contours.size(); i++ )
{
cout << " * Contour[" << i << "] - Area (M_00) = " << std::fixed << std::setprecision(2) << mu[i].m00
<< " - Area OpenCV: " << contourArea(contours[i]) << " - Length: " << arcLength( contours[i], true ) << endl;
}
}

View File

@@ -16,60 +16,71 @@ using namespace std;
*/
int main( void )
{
/// Create an image
const int r = 100;
Mat src = Mat::zeros( Size( 4*r, 4*r ), CV_8UC1 );
/// Create an image
const int r = 100;
Mat src = Mat::zeros( Size( 4*r, 4*r ), CV_8U );
/// Create a sequence of points to make a contour:
vector<Point2f> vert(6);
/// Create a sequence of points to make a contour
vector<Point2f> vert(6);
vert[0] = Point( 3*r/2, static_cast<int>(1.34*r) );
vert[1] = Point( 1*r, 2*r );
vert[2] = Point( 3*r/2, static_cast<int>(2.866*r) );
vert[3] = Point( 5*r/2, static_cast<int>(2.866*r) );
vert[4] = Point( 3*r, 2*r );
vert[5] = Point( 5*r/2, static_cast<int>(1.34*r) );
vert[0] = Point( 3*r/2, static_cast<int>(1.34*r) );
vert[1] = Point( 1*r, 2*r );
vert[2] = Point( 3*r/2, static_cast<int>(2.866*r) );
vert[3] = Point( 5*r/2, static_cast<int>(2.866*r) );
vert[4] = Point( 3*r, 2*r );
vert[5] = Point( 5*r/2, static_cast<int>(1.34*r) );
/// Draw it in src
for( int i = 0; i < 6; i++ )
{
line( src, vert[i], vert[(i+1)%6], Scalar( 255 ), 3 );
}
/// Draw it in src
for( int j = 0; j < 6; j++ )
{ line( src, vert[j], vert[(j+1)%6], Scalar( 255 ), 3, 8 ); }
/// Get the contours
vector<vector<Point> > contours;
findContours( src, contours, RETR_TREE, CHAIN_APPROX_SIMPLE);
/// Get the contours
vector<vector<Point> > contours;
/// Calculate the distances to the contour
Mat raw_dist( src.size(), CV_32F );
for( int i = 0; i < src.rows; i++ )
{
for( int j = 0; j < src.cols; j++ )
{
raw_dist.at<float>(i,j) = (float)pointPolygonTest( contours[0], Point2f((float)j, (float)i), true );
}
}
findContours( src, contours, RETR_TREE, CHAIN_APPROX_SIMPLE);
double minVal, maxVal;
minMaxLoc( raw_dist, &minVal, &maxVal );
minVal = abs(minVal);
maxVal = abs(maxVal);
/// Calculate the distances to the contour
Mat raw_dist( src.size(), CV_32FC1 );
for( int j = 0; j < src.rows; j++ )
{ for( int i = 0; i < src.cols; i++ )
{ raw_dist.at<float>(j,i) = (float)pointPolygonTest( contours[0], Point2f((float)i,(float)j), true ); }
}
double minVal; double maxVal;
minMaxLoc( raw_dist, &minVal, &maxVal, 0, 0, Mat() );
minVal = abs(minVal); maxVal = abs(maxVal);
/// Depicting the distances graphically
Mat drawing = Mat::zeros( src.size(), CV_8UC3 );
for( int j = 0; j < src.rows; j++ )
{ for( int i = 0; i < src.cols; i++ )
{
if( raw_dist.at<float>(j,i) < 0 )
{ drawing.at<Vec3b>(j,i)[0] = (uchar)(255 - abs(raw_dist.at<float>(j,i))*255/minVal); }
else if( raw_dist.at<float>(j,i) > 0 )
{ drawing.at<Vec3b>(j,i)[2] = (uchar)(255 - raw_dist.at<float>(j,i)*255/maxVal); }
/// Depicting the distances graphically
Mat drawing = Mat::zeros( src.size(), CV_8UC3 );
for( int i = 0; i < src.rows; i++ )
{
for( int j = 0; j < src.cols; j++ )
{
if( raw_dist.at<float>(i,j) < 0 )
{
drawing.at<Vec3b>(i,j)[0] = (uchar)(255 - abs(raw_dist.at<float>(i,j)) * 255 / minVal);
}
else if( raw_dist.at<float>(i,j) > 0 )
{
drawing.at<Vec3b>(i,j)[2] = (uchar)(255 - raw_dist.at<float>(i,j) * 255 / maxVal);
}
else
{ drawing.at<Vec3b>(j,i)[0] = 255; drawing.at<Vec3b>(j,i)[1] = 255; drawing.at<Vec3b>(j,i)[2] = 255; }
}
}
{
drawing.at<Vec3b>(i,j)[0] = 255;
drawing.at<Vec3b>(i,j)[1] = 255;
drawing.at<Vec3b>(i,j)[2] = 255;
}
}
}
/// Show your results
imshow( "Source", src );
imshow( "Distance", drawing );
/// Show your results
imshow( "Source", src );
imshow( "Distance", drawing );
waitKey(0);
return(0);
waitKey();
return 0;
}