Tutorial Discrete Fourier Transform

This commit is contained in:
tribta
2017-08-20 13:45:46 +01:00
parent 13317bdfda
commit 954e2f9b9c
5 changed files with 374 additions and 85 deletions

View File

@@ -0,0 +1,109 @@
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import java.util.List;
import java.util.*;
class DiscreteFourierTransformRun{
private void help() {
System.out.println("" +
"This program demonstrated the use of the discrete Fourier transform (DFT). \n" +
"The dft of an image is taken and it's power spectrum is displayed.\n" +
"Usage:\n" +
"./DiscreteFourierTransform [image_name -- default ../data/lena.jpg]");
}
public void run(String[] args){
help();
String filename = ((args.length > 0) ? args[0] : "../data/lena.jpg");
Mat I = Imgcodecs.imread(filename, Imgcodecs.IMREAD_GRAYSCALE);
if( I.empty() ) {
System.out.println("Error opening image");
System.exit(-1);
}
//! [expand]
Mat padded = new Mat(); //expand input image to optimal size
int m = Core.getOptimalDFTSize( I.rows() );
int n = Core.getOptimalDFTSize( I.cols() ); // on the border add zero values
Core.copyMakeBorder(I, padded, 0, m - I.rows(), 0, n - I.cols(), Core.BORDER_CONSTANT, Scalar.all(0));
//! [expand]
//! [complex_and_real]
List<Mat> planes = new ArrayList<Mat>();
padded.convertTo(padded, CvType.CV_32F);
planes.add(padded);
planes.add(Mat.zeros(padded.size(), CvType.CV_32F));
Mat complexI = new Mat();
Core.merge(planes, complexI); // Add to the expanded another plane with zeros
//! [complex_and_real]
//! [dft]
Core.dft(complexI, complexI); // this way the result may fit in the source matrix
//! [dft]
// compute the magnitude and switch to logarithmic scale
// => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
//! [magnitude]
Core.split(complexI, planes); // planes.get(0) = Re(DFT(I)
// planes.get(1) = Im(DFT(I))
Core.magnitude(planes.get(0), planes.get(1), planes.get(0));// planes.get(0) = magnitude
Mat magI = planes.get(0);
//! [magnitude]
//! [log]
Mat matOfOnes = Mat.ones(magI.size(), magI.type());
Core.add(matOfOnes, magI, magI); // switch to logarithmic scale
Core.log(magI, magI);
//! [log]
//! [crop_rearrange]
// crop the spectrum, if it has an odd number of rows or columns
magI = magI.submat(new Rect(0, 0, magI.cols() & -2, magI.rows() & -2));
// rearrange the quadrants of Fourier image so that the origin is at the image center
int cx = magI.cols()/2;
int cy = magI.rows()/2;
Mat q0 = new Mat(magI, new Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant
Mat q1 = new Mat(magI, new Rect(cx, 0, cx, cy)); // Top-Right
Mat q2 = new Mat(magI, new Rect(0, cy, cx, cy)); // Bottom-Left
Mat q3 = new Mat(magI, new Rect(cx, cy, cx, cy)); // Bottom-Right
Mat tmp = new Mat(); // swap quadrants (Top-Left with Bottom-Right)
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left)
q2.copyTo(q1);
tmp.copyTo(q2);
//! [crop_rearrange]
magI.convertTo(magI, CvType.CV_8UC1);
//! [normalize]
Core.normalize(magI, magI, 0, 255, Core.NORM_MINMAX, CvType.CV_8UC1); // Transform the matrix with float values
// into a viewable image form (float between
// values 0 and 255).
//! [normalize]
HighGui.imshow("Input Image" , I ); // Show the result
HighGui.imshow("Spectrum Magnitude", magI);
HighGui.waitKey();
System.exit(0);
}
}
public class DiscreteFourierTransform {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new DiscreteFourierTransformRun().run(args);
}
}