mirror of
https://github.com/zebrajr/opencv.git
synced 2026-01-15 12:15:17 +00:00
python: 'cv2.' -> 'cv.' via 'import cv2 as cv'
This commit is contained in:
@@ -1,28 +1,28 @@
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
SZ=20
|
||||
bin_n = 16 # Number of bins
|
||||
|
||||
|
||||
affine_flags = cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR
|
||||
affine_flags = cv.WARP_INVERSE_MAP|cv.INTER_LINEAR
|
||||
|
||||
## [deskew]
|
||||
def deskew(img):
|
||||
m = cv2.moments(img)
|
||||
m = cv.moments(img)
|
||||
if abs(m['mu02']) < 1e-2:
|
||||
return img.copy()
|
||||
skew = m['mu11']/m['mu02']
|
||||
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
|
||||
img = cv2.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
|
||||
img = cv.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
|
||||
return img
|
||||
## [deskew]
|
||||
|
||||
## [hog]
|
||||
def hog(img):
|
||||
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
|
||||
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
|
||||
mag, ang = cv2.cartToPolar(gx, gy)
|
||||
gx = cv.Sobel(img, cv.CV_32F, 1, 0)
|
||||
gy = cv.Sobel(img, cv.CV_32F, 0, 1)
|
||||
mag, ang = cv.cartToPolar(gx, gy)
|
||||
bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16)
|
||||
bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:]
|
||||
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
|
||||
@@ -31,7 +31,7 @@ def hog(img):
|
||||
return hist
|
||||
## [hog]
|
||||
|
||||
img = cv2.imread('digits.png',0)
|
||||
img = cv.imread('digits.png',0)
|
||||
if img is None:
|
||||
raise Exception("we need the digits.png image from samples/data here !")
|
||||
|
||||
@@ -49,13 +49,13 @@ hogdata = [map(hog,row) for row in deskewed]
|
||||
trainData = np.float32(hogdata).reshape(-1,64)
|
||||
responses = np.repeat(np.arange(10),250)[:,np.newaxis]
|
||||
|
||||
svm = cv2.ml.SVM_create()
|
||||
svm.setKernel(cv2.ml.SVM_LINEAR)
|
||||
svm.setType(cv2.ml.SVM_C_SVC)
|
||||
svm = cv.ml.SVM_create()
|
||||
svm.setKernel(cv.ml.SVM_LINEAR)
|
||||
svm.setType(cv.ml.SVM_C_SVC)
|
||||
svm.setC(2.67)
|
||||
svm.setGamma(5.383)
|
||||
|
||||
svm.train(trainData, cv2.ml.ROW_SAMPLE, responses)
|
||||
svm.train(trainData, cv.ml.ROW_SAMPLE, responses)
|
||||
svm.save('svm_data.dat')
|
||||
|
||||
###### Now testing ########################
|
||||
|
||||
Reference in New Issue
Block a user