mirror of
https://github.com/zebrajr/opencv.git
synced 2026-01-15 12:15:17 +00:00
Add Java and Python code for AKAZE local features matching tutorial. Fix incorrect uses of Mat.mul() in Java code.
Uniform Lowe's ratio test in the code.
This commit is contained in:
@@ -0,0 +1,81 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
from math import sqrt
|
||||
|
||||
## [load]
|
||||
parser = argparse.ArgumentParser(description='Code for AKAZE local features matching tutorial.')
|
||||
parser.add_argument('--input1', help='Path to input image 1.', default='../data/graf1.png')
|
||||
parser.add_argument('--input2', help='Path to input image 2.', default='../data/graf3.png')
|
||||
parser.add_argument('--homography', help='Path to the homography matrix.', default='../data/H1to3p.xml')
|
||||
args = parser.parse_args()
|
||||
|
||||
img1 = cv.imread(args.input1, cv.IMREAD_GRAYSCALE)
|
||||
img2 = cv.imread(args.input2, cv.IMREAD_GRAYSCALE)
|
||||
if img1 is None or img2 is None:
|
||||
print('Could not open or find the images!')
|
||||
exit(0)
|
||||
|
||||
fs = cv.FileStorage(args.homography, cv.FILE_STORAGE_READ)
|
||||
homography = fs.getFirstTopLevelNode().mat()
|
||||
## [load]
|
||||
|
||||
## [AKAZE]
|
||||
akaze = cv.AKAZE_create()
|
||||
kpts1, desc1 = akaze.detectAndCompute(img1, None)
|
||||
kpts2, desc2 = akaze.detectAndCompute(img2, None)
|
||||
## [AKAZE]
|
||||
|
||||
## [2-nn matching]
|
||||
matcher = cv.DescriptorMatcher_create(cv.DescriptorMatcher_BRUTEFORCE_HAMMING)
|
||||
nn_matches = matcher.knnMatch(desc1, desc2, 2)
|
||||
## [2-nn matching]
|
||||
|
||||
## [ratio test filtering]
|
||||
matched1 = []
|
||||
matched2 = []
|
||||
nn_match_ratio = 0.8 # Nearest neighbor matching ratio
|
||||
for m, n in nn_matches:
|
||||
if m.distance < nn_match_ratio * n.distance:
|
||||
matched1.append(kpts1[m.queryIdx])
|
||||
matched2.append(kpts2[m.trainIdx])
|
||||
## [ratio test filtering]
|
||||
|
||||
## [homography check]
|
||||
inliers1 = []
|
||||
inliers2 = []
|
||||
good_matches = []
|
||||
inlier_threshold = 2.5 # Distance threshold to identify inliers with homography check
|
||||
for i, m in enumerate(matched1):
|
||||
col = np.ones((3,1), dtype=np.float64)
|
||||
col[0:2,0] = m.pt
|
||||
|
||||
col = np.dot(homography, col)
|
||||
col /= col[2,0]
|
||||
dist = sqrt(pow(col[0,0] - matched2[i].pt[0], 2) +\
|
||||
pow(col[1,0] - matched2[i].pt[1], 2))
|
||||
|
||||
if dist < inlier_threshold:
|
||||
good_matches.append(cv.DMatch(len(inliers1), len(inliers2), 0))
|
||||
inliers1.append(matched1[i])
|
||||
inliers2.append(matched2[i])
|
||||
## [homography check]
|
||||
|
||||
## [draw final matches]
|
||||
res = np.empty((max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], 3), dtype=np.uint8)
|
||||
cv.drawMatches(img1, inliers1, img2, inliers2, good_matches, res)
|
||||
cv.imwrite("akaze_result.png", res)
|
||||
|
||||
inlier_ratio = len(inliers1) / float(len(matched1))
|
||||
print('A-KAZE Matching Results')
|
||||
print('*******************************')
|
||||
print('# Keypoints 1: \t', len(kpts1))
|
||||
print('# Keypoints 2: \t', len(kpts2))
|
||||
print('# Matches: \t', len(matched1))
|
||||
print('# Inliers: \t', len(inliers1))
|
||||
print('# Inliers Ratio: \t', inlier_ratio)
|
||||
|
||||
cv.imshow('result', res)
|
||||
cv.waitKey()
|
||||
## [draw final matches]
|
||||
@@ -29,7 +29,7 @@ knn_matches = matcher.knnMatch(descriptors1, descriptors2, 2)
|
||||
ratio_thresh = 0.7
|
||||
good_matches = []
|
||||
for m,n in knn_matches:
|
||||
if m.distance / n.distance <= ratio_thresh:
|
||||
if m.distance < ratio_thresh * n.distance:
|
||||
good_matches.append(m)
|
||||
|
||||
#-- Draw matches
|
||||
|
||||
@@ -29,7 +29,7 @@ knn_matches = matcher.knnMatch(descriptors_obj, descriptors_scene, 2)
|
||||
ratio_thresh = 0.75
|
||||
good_matches = []
|
||||
for m,n in knn_matches:
|
||||
if m.distance / n.distance <= ratio_thresh:
|
||||
if m.distance < ratio_thresh * n.distance:
|
||||
good_matches.append(m)
|
||||
|
||||
#-- Draw matches
|
||||
|
||||
Reference in New Issue
Block a user