Files
node/src/node_buffer.cc
Ben Noordhuis 157d2bcc04 buffer: fix gcc 4.2 build breakage
gcc 4.2 on OS X gets confused about the call to node::Buffer::Data().
Fully qualify the function name to help it along.

Fixes the following build error:

    ../../deps/v8/include/v8.h: In function ‘char*
    node::Buffer::Data(v8::Handle<v8::Value>)’:
    ../../deps/v8/include/v8.h:900: error: ‘class v8::Data’
    is not a function,
    ../../src/node_buffer.h:38: error:
    conflict with ‘char* node::Buffer::Data(v8::Handle<v8::Object>)’
    ../../src/node_buffer.cc:94: error:
    in call to ‘Data’
2013-06-20 13:23:12 +02:00

621 lines
17 KiB
C++

// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "node.h"
#include "node_internals.h"
#include "node_buffer.h"
#include "smalloc.h"
#include "string_bytes.h"
#include "v8.h"
#include "v8-profiler.h"
#include <assert.h>
#include <string.h>
#include <limits.h>
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define CHECK_NOT_OOB(r) \
do { if (!(r)) return ThrowRangeError("out of range index"); } while (0)
#define ARGS_THIS(argT) \
Local<Object> obj = argT; \
size_t obj_length = obj->GetIndexedPropertiesExternalArrayDataLength(); \
char* obj_data = static_cast<char*>( \
obj->GetIndexedPropertiesExternalArrayData());
#define SLICE_START_END(start_arg, end_arg, end_max) \
size_t start; \
size_t end; \
CHECK_NOT_OOB(ParseArrayIndex(start_arg, 0, &start)); \
CHECK_NOT_OOB(ParseArrayIndex(end_arg, end_max, &end)); \
if (end < start) end = start; \
CHECK_NOT_OOB(end <= end_max); \
size_t length = end - start;
namespace node {
namespace Buffer {
using v8::Arguments;
using v8::Function;
using v8::FunctionTemplate;
using v8::Handle;
using v8::HandleScope;
using v8::Local;
using v8::Number;
using v8::Object;
using v8::Persistent;
using v8::String;
using v8::Uint32;
using v8::Undefined;
using v8::Value;
Persistent<Function> p_buffer_fn;
bool HasInstance(Handle<Value> val) {
return val->IsObject() && HasInstance(val.As<Object>());
}
bool HasInstance(Handle<Object> obj) {
if (!obj->HasIndexedPropertiesInExternalArrayData())
return false;
v8::ExternalArrayType type = obj->GetIndexedPropertiesExternalArrayDataType();
return type == v8::kExternalUnsignedByteArray;
}
char* Data(Handle<Value> val) {
assert(val->IsObject());
// Use a fully qualified name here to work around a bug in gcc 4.2.
// It mistakes an unadorned call to Data() for the v8::String::Data type.
return node::Buffer::Data(val.As<Object>());
}
char* Data(Handle<Object> obj) {
assert(obj->HasIndexedPropertiesInExternalArrayData());
return static_cast<char*>(obj->GetIndexedPropertiesExternalArrayData());
}
size_t Length(Handle<Value> val) {
assert(val->IsObject());
return Length(val.As<Object>());
}
size_t Length(Handle<Object> obj) {
assert(obj->HasIndexedPropertiesInExternalArrayData());
return obj->GetIndexedPropertiesExternalArrayDataLength();
}
Local<Object> New(Handle<String> string, enum encoding enc) {
HandleScope scope(node_isolate);
size_t length = StringBytes::Size(string, enc);
Local<Object> buf = New(length);
char* data = Buffer::Data(buf);
StringBytes::Write(data, length, string, enc);
return scope.Close(buf);
}
// TODO(trevnorris): these have a flaw by needing to call the Buffer inst then
// Alloc. continue to look for a better architecture.
Local<Object> New(size_t length) {
HandleScope scope(node_isolate);
assert(length <= kMaxLength);
Handle<Value> argv[2];
// this is safe b/c Undefined and length fits in an SMI, so there's no risk
// of GC reclaiming the values prematurely.
argv[0] = Undefined(node_isolate);
argv[1] = Uint32::New(length, node_isolate);
Local<Object> obj = p_buffer_fn->NewInstance(2, argv);
smalloc::Alloc(obj, new char[length], length);
return scope.Close(obj);
}
// TODO(trevnorris): for backwards compatibility this is left to copy the data,
// but for consistency w/ the other should use data. And a copy version renamed
// to something else.
Local<Object> New(const char* data, size_t length) {
HandleScope scope(node_isolate);
assert(length <= kMaxLength);
Handle<Value> argv[2];
// this is safe b/c Undefined and length fits in an SMI, so there's no risk
// of GC reclaiming the values prematurely.
argv[0] = Undefined(node_isolate);
argv[1] = Uint32::New(length, node_isolate);
Local<Object> obj = p_buffer_fn->NewInstance(2, argv);
char* new_data = new char[length];
memcpy(new_data, data, length);
smalloc::Alloc(obj, new_data, length);
return scope.Close(obj);
}
Local<Object> New(char* data,
size_t length,
smalloc::FreeCallback callback,
void* hint) {
HandleScope scope(node_isolate);
assert(length <= kMaxLength);
Handle<Value> argv[2];
// this is safe b/c Undefined and length fits in an SMI, so there's no risk
// of GC reclaiming the values prematurely.
argv[0] = Undefined(node_isolate);
argv[1] = Uint32::New(length, node_isolate);
Local<Object> obj = p_buffer_fn->NewInstance(2, argv);
smalloc::Alloc(obj, data, length, callback, hint);
return scope.Close(obj);
}
Local<Object> Use(char* data, uint32_t length) {
HandleScope scope(node_isolate);
assert(length <= kMaxLength);
Handle<Value> argv[2];
// this is safe b/c Undefined and length fits in an SMI, so there's no risk
// of GC reclaiming the values prematurely.
argv[0] = Undefined(node_isolate);
argv[1] = Uint32::New(length, node_isolate);
Local<Object> obj = p_buffer_fn->NewInstance(2, argv);
smalloc::Alloc(obj, data, length);
return scope.Close(obj);
}
template <encoding encoding>
Handle<Value> StringSlice(const Arguments& args) {
HandleScope scope(node_isolate);
ARGS_THIS(args.This())
SLICE_START_END(args[0], args[1], obj_length)
return scope.Close(StringBytes::Encode(obj_data + start, length, encoding));
}
Handle<Value> BinarySlice(const Arguments& args) {
return StringSlice<BINARY>(args);
}
Handle<Value> AsciiSlice(const Arguments& args) {
return StringSlice<ASCII>(args);
}
Handle<Value> Utf8Slice(const Arguments& args) {
return StringSlice<UTF8>(args);
}
Handle<Value> Ucs2Slice(const Arguments& args) {
return StringSlice<UCS2>(args);
}
Handle<Value> HexSlice(const Arguments& args) {
return StringSlice<HEX>(args);
}
Handle<Value> Base64Slice(const Arguments& args) {
return StringSlice<BASE64>(args);
}
// bytesCopied = buffer.copy(target[, targetStart][, sourceStart][, sourceEnd]);
Handle<Value> Copy(const Arguments &args) {
HandleScope scope(node_isolate);
Local<Object> target = args[0]->ToObject();
if (!HasInstance(target))
return ThrowTypeError("first arg should be a Buffer");
ARGS_THIS(args.This())
size_t target_length = target->GetIndexedPropertiesExternalArrayDataLength();
char* target_data = static_cast<char*>(
target->GetIndexedPropertiesExternalArrayData());
size_t target_start;
size_t source_start;
size_t source_end;
CHECK_NOT_OOB(ParseArrayIndex(args[1], 0, &target_start));
CHECK_NOT_OOB(ParseArrayIndex(args[2], 0, &source_start));
CHECK_NOT_OOB(ParseArrayIndex(args[3], obj_length, &source_end));
// Copy 0 bytes; we're done
if (target_start >= target_length || source_start >= source_end)
return scope.Close(Uint32::New(0, node_isolate));
if (source_start > obj_length)
return ThrowRangeError("out of range index");
if (source_end - source_start > target_length - target_start)
source_end = source_start + target_length - target_start;
size_t to_copy = MIN(MIN(source_end - source_start,
target_length - target_start),
obj_length - source_start);
memmove(target_data + target_start, obj_data + source_start, to_copy);
return scope.Close(Uint32::New(to_copy, node_isolate));
}
// buffer.fill(value[, start][, end]);
Handle<Value> Fill(const Arguments &args) {
HandleScope scope(node_isolate);
ARGS_THIS(args.This())
SLICE_START_END(args[1], args[2], obj_length)
if (args[0]->IsNumber()) {
int value = args[0]->Uint32Value() & 255;
memset(obj_data + start, value, length);
return args.This();
}
String::Utf8Value at(args[0]);
size_t at_length = at.length();
// optimize single ascii character case
if (at_length == 1) {
int value = static_cast<int>((*at)[0]);
memset(obj_data + start, value, length);
return args.This();
}
size_t in_there = at_length;
char* ptr = obj_data + start + at_length;
memcpy(obj_data + start, *at, MIN(at_length, length));
if (at_length >= length)
return args.This();
while (in_there < length - in_there) {
memcpy(ptr, obj_data + start, in_there);
ptr += in_there;
in_there *= 2;
}
if (in_there < length) {
memcpy(ptr, obj_data + start, length - in_there);
in_there = length;
}
return args.This();
}
template <encoding encoding>
Handle<Value> StringWrite(const Arguments& args) {
HandleScope scope(node_isolate);
ARGS_THIS(args.This())
if (!args[0]->IsString())
return ThrowTypeError("Argument must be a string");
Local<String> str = args[0]->ToString();
if (encoding == HEX && str->Length() % 2 != 0)
return ThrowTypeError("Invalid hex string");
size_t offset;
size_t max_length;
CHECK_NOT_OOB(ParseArrayIndex(args[1], 0, &offset));
CHECK_NOT_OOB(ParseArrayIndex(args[2], obj_length - offset, &max_length));
max_length = MIN(obj_length - offset, max_length);
if (max_length == 0)
return scope.Close(Uint32::New(0, node_isolate));
if (encoding == UCS2)
max_length = max_length / 2;
if (offset >= obj_length)
return ThrowRangeError("Offset is out of bounds");
size_t written = StringBytes::Write(obj_data + offset,
max_length,
str,
encoding,
NULL);
return scope.Close(Uint32::New(written, node_isolate));
}
Handle<Value> Base64Write(const Arguments& args) {
return StringWrite<BASE64>(args);
}
Handle<Value> BinaryWrite(const Arguments& args) {
return StringWrite<BINARY>(args);
}
Handle<Value> Utf8Write(const Arguments& args) {
return StringWrite<UTF8>(args);
}
Handle<Value> Ucs2Write(const Arguments& args) {
return StringWrite<UCS2>(args);
}
Handle<Value> HexWrite(const Arguments& args) {
return StringWrite<HEX>(args);
}
Handle<Value> AsciiWrite(const Arguments& args) {
return StringWrite<ASCII>(args);
}
static inline void Swizzle(char* start, unsigned int len) {
char* end = start + len - 1;
while (start < end) {
char tmp = *start;
*start++ = *end;
*end-- = tmp;
}
}
template <typename T, enum Endianness endianness>
Handle<Value> ReadFloatGeneric(const Arguments& args) {
bool doAssert = !args[1]->BooleanValue();
size_t offset;
CHECK_NOT_OOB(ParseArrayIndex(args[0], 0, &offset));
if (doAssert) {
size_t len = Length(args.This());
if (offset + sizeof(T) > len || offset + sizeof(T) < offset)
return ThrowRangeError("Trying to read beyond buffer length");
}
union NoAlias {
T val;
char bytes[sizeof(T)];
};
union NoAlias na;
const void* data = args.This()->GetIndexedPropertiesExternalArrayData();
const char* ptr = static_cast<const char*>(data) + offset;
memcpy(na.bytes, ptr, sizeof(na.bytes));
if (endianness != GetEndianness()) Swizzle(na.bytes, sizeof(na.bytes));
return Number::New(na.val);
}
Handle<Value> ReadFloatLE(const Arguments& args) {
return ReadFloatGeneric<float, kLittleEndian>(args);
}
Handle<Value> ReadFloatBE(const Arguments& args) {
return ReadFloatGeneric<float, kBigEndian>(args);
}
Handle<Value> ReadDoubleLE(const Arguments& args) {
return ReadFloatGeneric<double, kLittleEndian>(args);
}
Handle<Value> ReadDoubleBE(const Arguments& args) {
return ReadFloatGeneric<double, kBigEndian>(args);
}
template <typename T, enum Endianness endianness>
Handle<Value> WriteFloatGeneric(const Arguments& args) {
bool doAssert = !args[2]->BooleanValue();
T val = static_cast<T>(args[0]->NumberValue());
size_t offset;
CHECK_NOT_OOB(ParseArrayIndex(args[1], 0, &offset));
if (doAssert) {
size_t len = Length(args.This());
if (offset + sizeof(T) > len || offset + sizeof(T) < offset)
return ThrowRangeError("Trying to write beyond buffer length");
}
union NoAlias {
T val;
char bytes[sizeof(T)];
};
union NoAlias na = { val };
void* data = args.This()->GetIndexedPropertiesExternalArrayData();
char* ptr = static_cast<char*>(data) + offset;
if (endianness != GetEndianness()) Swizzle(na.bytes, sizeof(na.bytes));
memcpy(ptr, na.bytes, sizeof(na.bytes));
return Undefined(node_isolate);
}
Handle<Value> WriteFloatLE(const Arguments& args) {
return WriteFloatGeneric<float, kLittleEndian>(args);
}
Handle<Value> WriteFloatBE(const Arguments& args) {
return WriteFloatGeneric<float, kBigEndian>(args);
}
Handle<Value> WriteDoubleLE(const Arguments& args) {
return WriteFloatGeneric<double, kLittleEndian>(args);
}
Handle<Value> WriteDoubleBE(const Arguments& args) {
return WriteFloatGeneric<double, kBigEndian>(args);
}
Handle<Value> ByteLength(const Arguments &args) {
HandleScope scope(node_isolate);
if (!args[0]->IsString())
return ThrowTypeError("Argument must be a string");
Local<String> s = args[0]->ToString();
enum encoding e = ParseEncoding(args[1], UTF8);
return scope.Close(Uint32::New(StringBytes::Size(s, e), node_isolate));
}
// pass Buffer object to load prototype methods
Handle<Value> SetupBufferJS(const Arguments& args) {
HandleScope scope(node_isolate);
assert(args[0]->IsFunction());
Local<Function> bv = args[0].As<Function>();
p_buffer_fn = Persistent<Function>::New(node_isolate, bv);
Local<Value> proto_v = bv->Get(String::New("prototype"));
assert(proto_v->IsObject());
Local<Object> proto = proto_v.As<Object>();
bv->Set(String::New("byteLength"),
FunctionTemplate::New(ByteLength)->GetFunction());
proto->Set(String::New("asciiSlice"),
FunctionTemplate::New(AsciiSlice)->GetFunction());
proto->Set(String::New("base64Slice"),
FunctionTemplate::New(Base64Slice)->GetFunction());
proto->Set(String::New("binarySlice"),
FunctionTemplate::New(BinarySlice)->GetFunction());
proto->Set(String::New("hexSlice"),
FunctionTemplate::New(HexSlice)->GetFunction());
proto->Set(String::New("ucs2Slice"),
FunctionTemplate::New(Ucs2Slice)->GetFunction());
proto->Set(String::New("utf8Slice"),
FunctionTemplate::New(Utf8Slice)->GetFunction());
proto->Set(String::New("asciiWrite"),
FunctionTemplate::New(AsciiWrite)->GetFunction());
proto->Set(String::New("base64Write"),
FunctionTemplate::New(Base64Write)->GetFunction());
proto->Set(String::New("binaryWrite"),
FunctionTemplate::New(BinaryWrite)->GetFunction());
proto->Set(String::New("hexWrite"),
FunctionTemplate::New(HexWrite)->GetFunction());
proto->Set(String::New("ucs2Write"),
FunctionTemplate::New(Ucs2Write)->GetFunction());
proto->Set(String::New("utf8Write"),
FunctionTemplate::New(Utf8Write)->GetFunction());
proto->Set(String::New("readDoubleBE"),
FunctionTemplate::New(ReadDoubleBE)->GetFunction());
proto->Set(String::New("readDoubleLE"),
FunctionTemplate::New(ReadDoubleLE)->GetFunction());
proto->Set(String::New("readFloatBE"),
FunctionTemplate::New(ReadFloatBE)->GetFunction());
proto->Set(String::New("readFloatLE"),
FunctionTemplate::New(ReadFloatLE)->GetFunction());
proto->Set(String::New("writeDoubleBE"),
FunctionTemplate::New(WriteDoubleBE)->GetFunction());
proto->Set(String::New("writeDoubleLE"),
FunctionTemplate::New(WriteDoubleLE)->GetFunction());
proto->Set(String::New("writeFloatBE"),
FunctionTemplate::New(WriteFloatBE)->GetFunction());
proto->Set(String::New("writeFloatLE"),
FunctionTemplate::New(WriteFloatLE)->GetFunction());
proto->Set(String::New("copy"),
FunctionTemplate::New(Copy)->GetFunction());
proto->Set(String::New("fill"),
FunctionTemplate::New(Fill)->GetFunction());
// for backwards compatibility
proto->Set(String::New("offset"), Uint32::New(0, node_isolate), v8::ReadOnly);
return Undefined(node_isolate);
}
void Initialize(Handle<Object> target) {
HandleScope scope(node_isolate);
target->Set(String::New("setupBufferJS"),
FunctionTemplate::New(SetupBufferJS)->GetFunction());
}
} // namespace Buffer
} // namespace node
NODE_MODULE(node_buffer, node::Buffer::Initialize)