Files
node/src/node_platform.cc
Ali Ijaz Sheikh e273abc01b src: ready background workers before bootstrap
Make sure background workers are ready before proceeding with the
bootstrap or post-bootstrap execution of any code that may trigger
`process.exit()`.

Fixes: https://github.com/nodejs/node/issues/23065

PR-URL: https://github.com/nodejs/node/pull/23233
Reviewed-By: James M Snell <jasnell@gmail.com>
Reviewed-By: Anna Henningsen <anna@addaleax.net>
2018-10-05 21:31:09 -07:00

532 lines
16 KiB
C++

#include "node_platform.h"
#include "node_internals.h"
#include "env-inl.h"
#include "debug_utils.h"
#include "util.h"
#include <algorithm>
namespace node {
using v8::HandleScope;
using v8::Isolate;
using v8::Local;
using v8::Object;
using v8::Platform;
using v8::Task;
using v8::TracingController;
namespace {
struct PlatformWorkerData {
TaskQueue<Task>* task_queue;
Mutex* platform_workers_mutex;
ConditionVariable* platform_workers_ready;
int* pending_platform_workers;
int id;
};
static void PlatformWorkerThread(void* data) {
std::unique_ptr<PlatformWorkerData>
worker_data(static_cast<PlatformWorkerData*>(data));
TaskQueue<Task>* pending_worker_tasks = worker_data->task_queue;
TRACE_EVENT_METADATA1("__metadata", "thread_name", "name",
"PlatformWorkerThread");
// Notify the main thread that the platform worker is ready.
{
Mutex::ScopedLock lock(*worker_data->platform_workers_mutex);
(*worker_data->pending_platform_workers)--;
worker_data->platform_workers_ready->Signal(lock);
}
while (std::unique_ptr<Task> task = pending_worker_tasks->BlockingPop()) {
task->Run();
pending_worker_tasks->NotifyOfCompletion();
}
}
} // namespace
class WorkerThreadsTaskRunner::DelayedTaskScheduler {
public:
explicit DelayedTaskScheduler(TaskQueue<Task>* tasks)
: pending_worker_tasks_(tasks) {}
std::unique_ptr<uv_thread_t> Start() {
auto start_thread = [](void* data) {
static_cast<DelayedTaskScheduler*>(data)->Run();
};
std::unique_ptr<uv_thread_t> t { new uv_thread_t() };
uv_sem_init(&ready_, 0);
CHECK_EQ(0, uv_thread_create(t.get(), start_thread, this));
uv_sem_wait(&ready_);
uv_sem_destroy(&ready_);
return t;
}
void PostDelayedTask(std::unique_ptr<Task> task, double delay_in_seconds) {
tasks_.Push(std::unique_ptr<Task>(new ScheduleTask(this, std::move(task),
delay_in_seconds)));
uv_async_send(&flush_tasks_);
}
void Stop() {
tasks_.Push(std::unique_ptr<Task>(new StopTask(this)));
uv_async_send(&flush_tasks_);
}
private:
void Run() {
TRACE_EVENT_METADATA1("__metadata", "thread_name", "name",
"WorkerThreadsTaskRunner::DelayedTaskScheduler");
loop_.data = this;
CHECK_EQ(0, uv_loop_init(&loop_));
flush_tasks_.data = this;
CHECK_EQ(0, uv_async_init(&loop_, &flush_tasks_, FlushTasks));
uv_sem_post(&ready_);
uv_run(&loop_, UV_RUN_DEFAULT);
CheckedUvLoopClose(&loop_);
}
static void FlushTasks(uv_async_t* flush_tasks) {
DelayedTaskScheduler* scheduler =
ContainerOf(&DelayedTaskScheduler::loop_, flush_tasks->loop);
while (std::unique_ptr<Task> task = scheduler->tasks_.Pop())
task->Run();
}
class StopTask : public Task {
public:
explicit StopTask(DelayedTaskScheduler* scheduler): scheduler_(scheduler) {}
void Run() override {
std::vector<uv_timer_t*> timers;
for (uv_timer_t* timer : scheduler_->timers_)
timers.push_back(timer);
for (uv_timer_t* timer : timers)
scheduler_->TakeTimerTask(timer);
uv_close(reinterpret_cast<uv_handle_t*>(&scheduler_->flush_tasks_),
[](uv_handle_t* handle) {});
}
private:
DelayedTaskScheduler* scheduler_;
};
class ScheduleTask : public Task {
public:
ScheduleTask(DelayedTaskScheduler* scheduler,
std::unique_ptr<Task> task,
double delay_in_seconds)
: scheduler_(scheduler),
task_(std::move(task)),
delay_in_seconds_(delay_in_seconds) {}
void Run() override {
uint64_t delay_millis =
static_cast<uint64_t>(delay_in_seconds_ + 0.5) * 1000;
std::unique_ptr<uv_timer_t> timer(new uv_timer_t());
CHECK_EQ(0, uv_timer_init(&scheduler_->loop_, timer.get()));
timer->data = task_.release();
CHECK_EQ(0, uv_timer_start(timer.get(), RunTask, delay_millis, 0));
scheduler_->timers_.insert(timer.release());
}
private:
DelayedTaskScheduler* scheduler_;
std::unique_ptr<Task> task_;
double delay_in_seconds_;
};
static void RunTask(uv_timer_t* timer) {
DelayedTaskScheduler* scheduler =
ContainerOf(&DelayedTaskScheduler::loop_, timer->loop);
scheduler->pending_worker_tasks_->Push(scheduler->TakeTimerTask(timer));
}
std::unique_ptr<Task> TakeTimerTask(uv_timer_t* timer) {
std::unique_ptr<Task> task(static_cast<Task*>(timer->data));
uv_timer_stop(timer);
uv_close(reinterpret_cast<uv_handle_t*>(timer), [](uv_handle_t* handle) {
delete reinterpret_cast<uv_timer_t*>(handle);
});
timers_.erase(timer);
return task;
}
uv_sem_t ready_;
TaskQueue<v8::Task>* pending_worker_tasks_;
TaskQueue<v8::Task> tasks_;
uv_loop_t loop_;
uv_async_t flush_tasks_;
std::unordered_set<uv_timer_t*> timers_;
};
WorkerThreadsTaskRunner::WorkerThreadsTaskRunner(int thread_pool_size) {
Mutex::ScopedLock lock(platform_workers_mutex_);
pending_platform_workers_ = thread_pool_size;
delayed_task_scheduler_.reset(
new DelayedTaskScheduler(&pending_worker_tasks_));
threads_.push_back(delayed_task_scheduler_->Start());
for (int i = 0; i < thread_pool_size; i++) {
PlatformWorkerData* worker_data = new PlatformWorkerData{
&pending_worker_tasks_, &platform_workers_mutex_,
&platform_workers_ready_, &pending_platform_workers_, i
};
std::unique_ptr<uv_thread_t> t { new uv_thread_t() };
if (uv_thread_create(t.get(), PlatformWorkerThread,
worker_data) != 0) {
break;
}
threads_.push_back(std::move(t));
}
// Wait for platform workers to initialize before continuing with the
// bootstrap.
while (pending_platform_workers_ > 0) {
platform_workers_ready_.Wait(lock);
}
}
void WorkerThreadsTaskRunner::PostTask(std::unique_ptr<Task> task) {
pending_worker_tasks_.Push(std::move(task));
}
void WorkerThreadsTaskRunner::PostDelayedTask(std::unique_ptr<v8::Task> task,
double delay_in_seconds) {
delayed_task_scheduler_->PostDelayedTask(std::move(task), delay_in_seconds);
}
void WorkerThreadsTaskRunner::BlockingDrain() {
pending_worker_tasks_.BlockingDrain();
}
void WorkerThreadsTaskRunner::Shutdown() {
pending_worker_tasks_.Stop();
delayed_task_scheduler_->Stop();
for (size_t i = 0; i < threads_.size(); i++) {
CHECK_EQ(0, uv_thread_join(threads_[i].get()));
}
}
int WorkerThreadsTaskRunner::NumberOfWorkerThreads() const {
return threads_.size();
}
PerIsolatePlatformData::PerIsolatePlatformData(
v8::Isolate* isolate, uv_loop_t* loop)
: loop_(loop) {
flush_tasks_ = new uv_async_t();
CHECK_EQ(0, uv_async_init(loop, flush_tasks_, FlushTasks));
flush_tasks_->data = static_cast<void*>(this);
uv_unref(reinterpret_cast<uv_handle_t*>(flush_tasks_));
}
void PerIsolatePlatformData::FlushTasks(uv_async_t* handle) {
auto platform_data = static_cast<PerIsolatePlatformData*>(handle->data);
platform_data->FlushForegroundTasksInternal();
}
void PerIsolatePlatformData::PostIdleTask(std::unique_ptr<v8::IdleTask> task) {
UNREACHABLE();
}
void PerIsolatePlatformData::PostTask(std::unique_ptr<Task> task) {
CHECK_NE(flush_tasks_, nullptr);
foreground_tasks_.Push(std::move(task));
uv_async_send(flush_tasks_);
}
void PerIsolatePlatformData::PostDelayedTask(
std::unique_ptr<Task> task, double delay_in_seconds) {
CHECK_NE(flush_tasks_, nullptr);
std::unique_ptr<DelayedTask> delayed(new DelayedTask());
delayed->task = std::move(task);
delayed->platform_data = shared_from_this();
delayed->timeout = delay_in_seconds;
foreground_delayed_tasks_.Push(std::move(delayed));
uv_async_send(flush_tasks_);
}
PerIsolatePlatformData::~PerIsolatePlatformData() {
Shutdown();
}
void PerIsolatePlatformData::Shutdown() {
if (flush_tasks_ == nullptr)
return;
while (FlushForegroundTasksInternal()) {}
CancelPendingDelayedTasks();
uv_close(reinterpret_cast<uv_handle_t*>(flush_tasks_),
[](uv_handle_t* handle) {
delete reinterpret_cast<uv_async_t*>(handle);
});
flush_tasks_ = nullptr;
}
void PerIsolatePlatformData::ref() {
ref_count_++;
}
int PerIsolatePlatformData::unref() {
return --ref_count_;
}
NodePlatform::NodePlatform(int thread_pool_size,
TracingController* tracing_controller) {
if (tracing_controller) {
tracing_controller_.reset(tracing_controller);
} else {
TracingController* controller = new TracingController();
tracing_controller_.reset(controller);
}
worker_thread_task_runner_ =
std::make_shared<WorkerThreadsTaskRunner>(thread_pool_size);
}
void NodePlatform::RegisterIsolate(Isolate* isolate, uv_loop_t* loop) {
Mutex::ScopedLock lock(per_isolate_mutex_);
std::shared_ptr<PerIsolatePlatformData> existing = per_isolate_[isolate];
if (existing) {
CHECK_EQ(loop, existing->event_loop());
existing->ref();
} else {
per_isolate_[isolate] =
std::make_shared<PerIsolatePlatformData>(isolate, loop);
}
}
void NodePlatform::UnregisterIsolate(Isolate* isolate) {
Mutex::ScopedLock lock(per_isolate_mutex_);
std::shared_ptr<PerIsolatePlatformData> existing = per_isolate_[isolate];
CHECK(existing);
if (existing->unref() == 0) {
existing->Shutdown();
per_isolate_.erase(isolate);
}
}
void NodePlatform::Shutdown() {
worker_thread_task_runner_->Shutdown();
{
Mutex::ScopedLock lock(per_isolate_mutex_);
per_isolate_.clear();
}
}
int NodePlatform::NumberOfWorkerThreads() {
return worker_thread_task_runner_->NumberOfWorkerThreads();
}
void PerIsolatePlatformData::RunForegroundTask(std::unique_ptr<Task> task) {
Isolate* isolate = Isolate::GetCurrent();
HandleScope scope(isolate);
Environment* env = Environment::GetCurrent(isolate);
InternalCallbackScope cb_scope(env, Local<Object>(), { 0, 0 },
InternalCallbackScope::kAllowEmptyResource);
task->Run();
}
void PerIsolatePlatformData::DeleteFromScheduledTasks(DelayedTask* task) {
auto it = std::find_if(scheduled_delayed_tasks_.begin(),
scheduled_delayed_tasks_.end(),
[task](const DelayedTaskPointer& delayed) -> bool {
return delayed.get() == task;
});
CHECK_NE(it, scheduled_delayed_tasks_.end());
scheduled_delayed_tasks_.erase(it);
}
void PerIsolatePlatformData::RunForegroundTask(uv_timer_t* handle) {
DelayedTask* delayed = static_cast<DelayedTask*>(handle->data);
RunForegroundTask(std::move(delayed->task));
delayed->platform_data->DeleteFromScheduledTasks(delayed);
}
void PerIsolatePlatformData::CancelPendingDelayedTasks() {
scheduled_delayed_tasks_.clear();
}
void NodePlatform::DrainTasks(Isolate* isolate) {
std::shared_ptr<PerIsolatePlatformData> per_isolate = ForIsolate(isolate);
do {
// Worker tasks aren't associated with an Isolate.
worker_thread_task_runner_->BlockingDrain();
} while (per_isolate->FlushForegroundTasksInternal());
}
bool PerIsolatePlatformData::FlushForegroundTasksInternal() {
bool did_work = false;
while (std::unique_ptr<DelayedTask> delayed =
foreground_delayed_tasks_.Pop()) {
did_work = true;
uint64_t delay_millis =
static_cast<uint64_t>(delayed->timeout + 0.5) * 1000;
delayed->timer.data = static_cast<void*>(delayed.get());
uv_timer_init(loop_, &delayed->timer);
// Timers may not guarantee queue ordering of events with the same delay if
// the delay is non-zero. This should not be a problem in practice.
uv_timer_start(&delayed->timer, RunForegroundTask, delay_millis, 0);
uv_unref(reinterpret_cast<uv_handle_t*>(&delayed->timer));
scheduled_delayed_tasks_.emplace_back(delayed.release(),
[](DelayedTask* delayed) {
uv_close(reinterpret_cast<uv_handle_t*>(&delayed->timer),
[](uv_handle_t* handle) {
delete static_cast<DelayedTask*>(handle->data);
});
});
}
// Move all foreground tasks into a separate queue and flush that queue.
// This way tasks that are posted while flushing the queue will be run on the
// next call of FlushForegroundTasksInternal.
std::queue<std::unique_ptr<Task>> tasks = foreground_tasks_.PopAll();
while (!tasks.empty()) {
std::unique_ptr<Task> task = std::move(tasks.front());
tasks.pop();
did_work = true;
RunForegroundTask(std::move(task));
}
return did_work;
}
void NodePlatform::CallOnWorkerThread(std::unique_ptr<v8::Task> task) {
worker_thread_task_runner_->PostTask(std::move(task));
}
void NodePlatform::CallDelayedOnWorkerThread(std::unique_ptr<v8::Task> task,
double delay_in_seconds) {
worker_thread_task_runner_->PostDelayedTask(std::move(task),
delay_in_seconds);
}
std::shared_ptr<PerIsolatePlatformData>
NodePlatform::ForIsolate(Isolate* isolate) {
Mutex::ScopedLock lock(per_isolate_mutex_);
std::shared_ptr<PerIsolatePlatformData> data = per_isolate_[isolate];
CHECK(data);
return data;
}
void NodePlatform::CallOnForegroundThread(Isolate* isolate, Task* task) {
ForIsolate(isolate)->PostTask(std::unique_ptr<Task>(task));
}
void NodePlatform::CallDelayedOnForegroundThread(Isolate* isolate,
Task* task,
double delay_in_seconds) {
ForIsolate(isolate)->PostDelayedTask(
std::unique_ptr<Task>(task), delay_in_seconds);
}
bool NodePlatform::FlushForegroundTasks(v8::Isolate* isolate) {
return ForIsolate(isolate)->FlushForegroundTasksInternal();
}
void NodePlatform::CancelPendingDelayedTasks(v8::Isolate* isolate) {
ForIsolate(isolate)->CancelPendingDelayedTasks();
}
bool NodePlatform::IdleTasksEnabled(Isolate* isolate) { return false; }
std::shared_ptr<v8::TaskRunner>
NodePlatform::GetForegroundTaskRunner(Isolate* isolate) {
return ForIsolate(isolate);
}
double NodePlatform::MonotonicallyIncreasingTime() {
// Convert nanos to seconds.
return uv_hrtime() / 1e9;
}
double NodePlatform::CurrentClockTimeMillis() {
return SystemClockTimeMillis();
}
TracingController* NodePlatform::GetTracingController() {
return tracing_controller_.get();
}
template <class T>
TaskQueue<T>::TaskQueue()
: lock_(), tasks_available_(), tasks_drained_(),
outstanding_tasks_(0), stopped_(false), task_queue_() { }
template <class T>
void TaskQueue<T>::Push(std::unique_ptr<T> task) {
Mutex::ScopedLock scoped_lock(lock_);
outstanding_tasks_++;
task_queue_.push(std::move(task));
tasks_available_.Signal(scoped_lock);
}
template <class T>
std::unique_ptr<T> TaskQueue<T>::Pop() {
Mutex::ScopedLock scoped_lock(lock_);
if (task_queue_.empty()) {
return std::unique_ptr<T>(nullptr);
}
std::unique_ptr<T> result = std::move(task_queue_.front());
task_queue_.pop();
return result;
}
template <class T>
std::unique_ptr<T> TaskQueue<T>::BlockingPop() {
Mutex::ScopedLock scoped_lock(lock_);
while (task_queue_.empty() && !stopped_) {
tasks_available_.Wait(scoped_lock);
}
if (stopped_) {
return std::unique_ptr<T>(nullptr);
}
std::unique_ptr<T> result = std::move(task_queue_.front());
task_queue_.pop();
return result;
}
template <class T>
void TaskQueue<T>::NotifyOfCompletion() {
Mutex::ScopedLock scoped_lock(lock_);
if (--outstanding_tasks_ == 0) {
tasks_drained_.Broadcast(scoped_lock);
}
}
template <class T>
void TaskQueue<T>::BlockingDrain() {
Mutex::ScopedLock scoped_lock(lock_);
while (outstanding_tasks_ > 0) {
tasks_drained_.Wait(scoped_lock);
}
}
template <class T>
void TaskQueue<T>::Stop() {
Mutex::ScopedLock scoped_lock(lock_);
stopped_ = true;
tasks_available_.Broadcast(scoped_lock);
}
template <class T>
std::queue<std::unique_ptr<T>> TaskQueue<T>::PopAll() {
Mutex::ScopedLock scoped_lock(lock_);
std::queue<std::unique_ptr<T>> result;
result.swap(task_queue_);
return result;
}
} // namespace node