This commit adds more links and reuses existing link references more. PR-URL: https://github.com/nodejs/node/pull/7784 Reviewed-By: James M Snell <jasnell@gmail.com> Reviewed-By: Trevor Norris <trev.norris@gmail.com>
64 KiB
Buffer
Stability: 2 - Stable
Prior to the introduction of TypedArray in ECMAScript 2015 (ES6), the
JavaScript language had no mechanism for reading or manipulating streams
of binary data. The Buffer class was introduced as part of the Node.js
API to make it possible to interact with octet streams in the context of things
like TCP streams and file system operations.
Now that TypedArray has been added in ES6, the Buffer class implements the
Uint8Array API in a manner that is more optimized and suitable for Node.js'
use cases.
Instances of the Buffer class are similar to arrays of integers but
correspond to fixed-sized, raw memory allocations outside the V8 heap.
The size of the Buffer is established when it is created and cannot be
resized.
The Buffer class is a global within Node.js, making it unlikely that one
would need to ever use require('buffer').Buffer.
// Creates a zero-filled Buffer of length 10.
const buf1 = Buffer.alloc(10);
// Creates a Buffer of length 10, filled with 0x1.
const buf2 = Buffer.alloc(10, 1);
// Creates an uninitialized buffer of length 10.
// This is faster than calling Buffer.alloc() but the returned
// Buffer instance might contain old data that needs to be
// overwritten using either fill() or write().
const buf3 = Buffer.allocUnsafe(10);
// Creates a Buffer containing [0x1, 0x2, 0x3].
const buf4 = Buffer.from([1, 2, 3]);
// Creates a Buffer containing ASCII bytes [0x74, 0x65, 0x73, 0x74].
const buf5 = Buffer.from('test');
// Creates a Buffer containing UTF-8 bytes [0x74, 0xc3, 0xa9, 0x73, 0x74].
const buf6 = Buffer.from('tést', 'utf8');
Buffer.from(), Buffer.alloc(), and Buffer.allocUnsafe()
In versions of Node.js prior to v6, Buffer instances were created using the
Buffer constructor function, which allocates the returned Buffer
differently based on what arguments are provided:
- Passing a number as the first argument to
Buffer()(e.g.new Buffer(10)), allocates a newBufferobject of the specified size. The memory allocated for suchBufferinstances is not initialized and can contain sensitive data. SuchBufferinstances must be initialized manually by using eitherbuf.fill(0)or by writing to theBuffercompletely. While this behavior is intentional to improve performance, development experience has demonstrated that a more explicit distinction is required between creating a fast-but-uninitializedBufferversus creating a slower-but-saferBuffer. - Passing a string, array, or
Bufferas the first argument copies the passed object's data into theBuffer. - Passing an
ArrayBufferreturns aBufferthat shares allocated memory with the givenArrayBuffer.
Because the behavior of new Buffer() changes significantly based on the type
of value passed as the first argument, applications that do not properly
validate the input arguments passed to new Buffer(), or that fail to
appropriately initialize newly allocated Buffer content, can inadvertently
introduce security and reliability issues into their code.
To make the creation of Buffer objects more reliable and less error prone,
the various forms of the new Buffer() constructor have been deprecated
and replaced by separate Buffer.from(), Buffer.alloc(), and
Buffer.allocUnsafe() methods.
Developers should migrate all existing uses of the new Buffer() constructors
to one of these new APIs.
Buffer.from(array)returns a newBuffercontaining a copy of the provided octets.Buffer.from(arrayBuffer[, byteOffset [, length]])returns a newBufferthat shares the same allocated memory as the givenArrayBuffer.Buffer.from(buffer)returns a newBuffercontaining a copy of the contents of the givenBuffer.Buffer.from(string[, encoding])returns a newBuffercontaining a copy of the provided string.Buffer.alloc(size[, fill[, encoding]])returns a "filled"Bufferinstance of the specified size. This method can be significantly slower thanBuffer.allocUnsafe(size)but ensures that newly createdBufferinstances never contain old and potentially sensitive data.Buffer.allocUnsafe(size)andBuffer.allocUnsafeSlow(size)each return a newBufferof the specifiedsizewhose content must be initialized using eitherbuf.fill(0)or written to completely.
Buffer instances returned by Buffer.allocUnsafe() may be allocated off
a shared internal memory pool if size is less than or equal to half
Buffer.poolSize. Instances returned by Buffer.allocUnsafeSlow() never
use the shared internal memory pool.
The --zero-fill-buffers command line option
Node.js can be started using the --zero-fill-buffers command line option to
force all newly allocated Buffer instances created using either
new Buffer(size), Buffer.allocUnsafe(), Buffer.allocUnsafeSlow() or
new SlowBuffer(size) to be automatically zero-filled upon creation. Use of
this flag changes the default behavior of these methods and can have a significant
impact on performance. Use of the --zero-fill-buffers option is recommended
only when necessary to enforce that newly allocated Buffer instances cannot
contain potentially sensitive data.
$ node --zero-fill-buffers
> Buffer.allocUnsafe(5);
<Buffer 00 00 00 00 00>
What makes Buffer.allocUnsafe() and Buffer.allocUnsafeSlow() "unsafe"?
When calling Buffer.allocUnsafe() and Buffer.allocUnsafeSlow(), the
segment of allocated memory is uninitialized (it is not zeroed-out). While
this design makes the allocation of memory quite fast, the allocated segment of
memory might contain old data that is potentially sensitive. Using a Buffer
created by Buffer.allocUnsafe() without completely overwriting the memory
can allow this old data to be leaked when the Buffer memory is read.
While there are clear performance advantages to using Buffer.allocUnsafe(),
extra care must be taken in order to avoid introducing security
vulnerabilities into an application.
Buffers and Character Encodings
Buffers are commonly used to represent sequences of encoded characters such as UTF8, UCS2, Base64 or even Hex-encoded data. It is possible to convert back and forth between Buffers and ordinary JavaScript string objects by using an explicit encoding method.
const buf = Buffer.from('hello world', 'ascii');
// Prints: 68656c6c6f20776f726c64
console.log(buf.toString('hex'));
// Prints: aGVsbG8gd29ybGQ=
console.log(buf.toString('base64'));
The character encodings currently supported by Node.js include:
-
'ascii'- for 7-bit ASCII data only. This encoding method is very fast and will strip the high bit if set. -
'utf8'- Multibyte encoded Unicode characters. Many web pages and other document formats use UTF-8. -
'utf16le'- 2 or 4 bytes, little-endian encoded Unicode characters. Surrogate pairs (U+10000 to U+10FFFF) are supported. -
'ucs2'- Alias of'utf16le'. -
'base64'- Base64 string encoding. When creating a buffer from a string, this encoding will also correctly accept "URL and Filename Safe Alphabet" as specified in RFC4648, Section 5. -
'latin1'- A way of encoding theBufferinto a one-byte encoded string (as defined by the IANA in RFC1345, page 63, to be the Latin-1 supplement block and C0/C1 control codes). -
'binary'- Alias forlatin1. -
'hex'- Encode each byte as two hexadecimal characters.
Note: Today's browsers follow the WHATWG spec which aliases both 'latin1' and
ISO-8859-1 to Windows-1252. This means that while doing something like http.get(),
if the returned charset is one of those listed in the WHATWG spec it's possible
that the server actually returned win-1252 encoded data, and using latin1
encoding may incorrectly decode the graphical characters.
Buffers and TypedArray
Buffer instances are also Uint8Array instances. However, there are subtle
incompatibilities with the TypedArray specification in ECMAScript 2015.
For example, while ArrayBuffer#slice() creates a copy of the slice, the
implementation of Buffer#slice() creates a view over the
existing Buffer without copying, making Buffer#slice() far
more efficient.
It is also possible to create new TypedArray instances from a Buffer with
the following caveats:
-
The
Bufferobject's memory is copied to theTypedArray, not shared. -
The
Bufferobject's memory is interpreted as an array of distinct elements, and not as a byte array of the target type. That is,new Uint32Array(Buffer.from([1, 2, 3, 4]))creates a 4-elementUint32Arraywith elements[1, 2, 3, 4], not aUint32Arraywith a single element[0x1020304]or[0x4030201].
It is possible to create a new Buffer that shares the same allocated memory as
a TypedArray instance by using the TypeArray object's .buffer property.
const arr = new Uint16Array(2);
arr[0] = 5000;
arr[1] = 4000;
// Copies the contents of `arr`
const buf1 = Buffer.from(arr);
// Shares memory with `arr`
const buf2 = Buffer.from(arr.buffer);
// Prints: <Buffer 88 a0>
console.log(buf1);
// Prints: <Buffer 88 13 a0 0f>
console.log(buf2);
arr[1] = 6000;
// Prints: <Buffer 88 a0>
console.log(buf1);
// Prints: <Buffer 88 13 70 17>
console.log(buf2);
Note that when creating a Buffer using a TypedArray's .buffer, it is
possible to use only a portion of the underlying ArrayBuffer by passing in
byteOffset and length parameters.
const arr = new Uint16Array(20);
const buf = Buffer.from(arr.buffer, 0, 16);
// Prints: 16
console.log(buf.length);
The Buffer.from() and TypedArray.from() (e.g. Uint8Array.from()) have
different signatures and implementations. Specifically, the TypedArray variants
accept a second argument that is a mapping function that is invoked on every
element of the typed array:
TypedArray.from(source[, mapFn[, thisArg]])
The Buffer.from() method, however, does not support the use of a mapping
function:
Buffer.from(array)Buffer.from(buffer)Buffer.from(arrayBuffer[, byteOffset [, length]])Buffer.from(string[, encoding])
Buffers and ES6 iteration
Buffers can be iterated over using the ECMAScript 2015 (ES6) for..of syntax:
const buf = Buffer.from([1, 2, 3]);
// Prints:
// 1
// 2
// 3
for (var b of buf) {
console.log(b);
}
Additionally, the buf.values(), buf.keys(), and
buf.entries() methods can be used to create iterators.
Class: Buffer
The Buffer class is a global type for dealing with binary data directly. It can be constructed in a variety of ways.
new Buffer(array)
Stability: 0 - Deprecated: Use [`Buffer.from(array)`] instead.
array{Array}
Allocates a new Buffer using an array of octets.
// Creates a new Buffer containing the ASCII bytes of the string 'buffer'
const buf = new Buffer([0x62, 0x75, 0x66, 0x66, 0x65, 0x72]);
new Buffer(buffer)
Stability: 0 - Deprecated: Use [`Buffer.from(buffer)`] instead.
buffer{Buffer}
Copies the passed buffer data onto a new Buffer instance.
const buf1 = new Buffer('buffer');
const buf2 = new Buffer(buf1);
buf1[0] = 0x61;
// Prints: auffer
console.log(buf1.toString());
// Prints: buffer
console.log(buf2.toString());
new Buffer(arrayBuffer[, byteOffset [, length]])
Stability: 0 - Deprecated: Use
[`Buffer.from(arrayBuffer[, byteOffset [, length]])`][`Buffer.from(arrayBuffer)`]
instead.
arrayBuffer{ArrayBuffer} The.bufferproperty of aTypedArrayor anew ArrayBuffer()byteOffset{Number} Default:0length{Number} Default:arrayBuffer.length - byteOffset
When passed a reference to the .buffer property of a TypedArray instance,
the newly created Buffer will share the same allocated memory as the
TypedArray.
The optional byteOffset and length arguments specify a memory range within
the arrayBuffer that will be shared by the Buffer.
const arr = new Uint16Array(2);
arr[0] = 5000;
arr[1] = 4000;
// Shares memory with `arr`
const buf = new Buffer(arr.buffer);
// Prints: <Buffer 88 13 a0 0f>
console.log(buf);
// Changing the original Uint16Array changes the Buffer also
arr[1] = 6000;
// Prints: <Buffer 88 13 70 17>
console.log(buf);
new Buffer(size)
Stability: 0 - Deprecated: Use [`Buffer.alloc()`] instead (also see
[`Buffer.allocUnsafe()`]).
size{Number}
Allocates a new Buffer of size bytes. The size must be less than
or equal to the value of require('buffer').kMaxLength (on 64-bit
architectures, kMaxLength is (2^31)-1). Otherwise, a RangeError is
thrown. A zero-length Buffer will be created if a size less than or equal to
0 is specified.
Unlike ArrayBuffers, the underlying memory for Buffer instances
created in this way is not initialized. The contents of a newly created Buffer
are unknown and could contain sensitive data. Use buf.fill(0)
to initialize a Buffer to zeroes.
const buf = new Buffer(5);
// Prints (contents may vary): <Buffer 78 e0 82 02 01>
console.log(buf);
buf.fill(0);
// Prints: <Buffer 00 00 00 00 00>
console.log(buf);
new Buffer(str[, encoding])
Stability: 0 - Deprecated:
Use [`Buffer.from(str[, encoding])`][buffer_from_string] instead.
str{String} string to encode.encoding{String} Default:'utf8'
Creates a new Buffer containing the given JavaScript string str. If
provided, the encoding parameter identifies the strings character encoding.
const buf1 = new Buffer('this is a tést');
// Prints: this is a tést
console.log(buf1.toString());
// Prints: this is a tC)st
console.log(buf1.toString('ascii'));
const buf2 = new Buffer('7468697320697320612074c3a97374', 'hex');
// Prints: this is a tést
console.log(buf2.toString());
Class Method: Buffer.alloc(size[, fill[, encoding]])
size{Number}fill{Value} Default:undefinedencoding{String} Default:utf8
Allocates a new Buffer of size bytes. If fill is undefined, the
Buffer will be zero-filled.
const buf = Buffer.alloc(5);
// Prints: <Buffer 00 00 00 00 00>
console.log(buf);
The size must be less than or equal to the value of
require('buffer').kMaxLength (on 64-bit architectures, kMaxLength is
(2^31)-1). Otherwise, a RangeError is thrown. A zero-length Buffer will
be created if a size less than or equal to 0 is specified.
If fill is specified, the allocated Buffer will be initialized by calling
buf.fill(fill).
const buf = Buffer.alloc(5, 'a');
// Prints: <Buffer 61 61 61 61 61>
console.log(buf);
If both fill and encoding are specified, the allocated Buffer will be
initialized by calling buf.fill(fill, encoding).
const buf = Buffer.alloc(11, 'aGVsbG8gd29ybGQ=', 'base64');
// Prints: <Buffer 68 65 6c 6c 6f 20 77 6f 72 6c 64>
console.log(buf);
Calling Buffer.alloc() can be significantly slower than the alternative
Buffer.allocUnsafe() but ensures that the newly created Buffer instance
contents will never contain sensitive data.
A TypeError will be thrown if size is not a number.
Class Method: Buffer.allocUnsafe(size)
size{Number}
Allocates a new non-zero-filled Buffer of size bytes. The size must
be less than or equal to the value of require('buffer').kMaxLength (on 64-bit
architectures, kMaxLength is (2^31)-1). Otherwise, a RangeError is
thrown. A zero-length Buffer will be created if a size less than or equal to
0 is specified.
The underlying memory for Buffer instances created in this way is not
initialized. The contents of the newly created Buffer are unknown and
may contain sensitive data. Use buf.fill(0) to initialize such
Buffer instances to zeroes.
const buf = Buffer.allocUnsafe(5);
// Prints (contents may vary): <Buffer 78 e0 82 02 01>
console.log(buf);
buf.fill(0);
// Prints: <Buffer 00 00 00 00 00>
console.log(buf);
A TypeError will be thrown if size is not a number.
Note that the Buffer module pre-allocates an internal Buffer instance of
size Buffer.poolSize that is used as a pool for the fast allocation of new
Buffer instances created using Buffer.allocUnsafe() (and the deprecated
new Buffer(size) constructor) only when size is less than or equal to
Buffer.poolSize >> 1 (floor of Buffer.poolSize divided by two). The default
value of Buffer.poolSize is 8192 but can be modified.
Use of this pre-allocated internal memory pool is a key difference between
calling Buffer.alloc(size, fill) vs. Buffer.allocUnsafe(size).fill(fill).
Specifically, Buffer.alloc(size, fill) will never use the internal Buffer
pool, while Buffer.allocUnsafe(size).fill(fill) will use the internal
Buffer pool if size is less than or equal to half Buffer.poolSize. The
difference is subtle but can be important when an application requires the
additional performance that Buffer.allocUnsafe() provides.
Class Method: Buffer.allocUnsafeSlow(size)
size{Number}
Allocates a new non-zero-filled and non-pooled Buffer of size bytes. The
size must be less than or equal to the value of
require('buffer').kMaxLength (on 64-bit architectures, kMaxLength is
(2^31)-1). Otherwise, a RangeError is thrown. A zero-length Buffer will
be created if a size less than or equal to 0 is specified.
The underlying memory for Buffer instances created in this way is not
initialized. The contents of the newly created Buffer are unknown and
may contain sensitive data. Use buf.fill(0) to initialize such
Buffer instances to zeroes.
When using Buffer.allocUnsafe() to allocate new Buffer instances,
allocations under 4KB are, by default, sliced from a single pre-allocated
Buffer. This allows applications to avoid the garbage collection overhead of
creating many individually allocated Buffers. This approach improves both
performance and memory usage by eliminating the need to track and cleanup as
many Persistent objects.
However, in the case where a developer may need to retain a small chunk of
memory from a pool for an indeterminate amount of time, it may be appropriate
to create an un-pooled Buffer instance using Buffer.allocUnsafeSlow() then
copy out the relevant bits.
// Need to keep around a few small chunks of memory
const store = [];
socket.on('readable', () => {
const data = socket.read();
// Allocate for retained data
const sb = Buffer.allocUnsafeSlow(10);
// Copy the data into the new allocation
data.copy(sb, 0, 0, 10);
store.push(sb);
});
Use of Buffer.allocUnsafeSlow() should be used only as a last resort after
a developer has observed undue memory retention in their applications.
A TypeError will be thrown if size is not a number.
Class Method: Buffer.byteLength(string[, encoding])
string{String | Buffer | TypedArray | DataView | ArrayBuffer}encoding{String} Default:'utf8'- Return: {Number}
Returns the actual byte length of a string. This is not the same as
String.prototype.length since that returns the number of characters in
a string.
Example:
const str = '\u00bd + \u00bc = \u00be';
// Prints: ½ + ¼ = ¾: 9 characters, 12 bytes
console.log(`${str}: ${str.length} characters, ` +
`${Buffer.byteLength(str, 'utf8')} bytes`);
When string is a Buffer/DataView/TypedArray/ArrayBuffer, the
actual byte length is returned.
Otherwise, converts to String and returns the byte length of string.
Class Method: Buffer.compare(buf1, buf2)
buf1{Buffer}buf2{Buffer}- Return: {Number}
Compares buf1 to buf2 typically for the purpose of sorting arrays of
Buffer instances. This is equivalent to calling
buf1.compare(buf2).
const buf1 = Buffer.from('1234');
const buf2 = Buffer.from('0123');
const arr = [buf1, buf2];
// Prints: [ <Buffer 30 31 32 33>, <Buffer 31 32 33 34> ]
// (This result is equal to: [buf2, buf1])
console.log(arr.sort(Buffer.compare));
Class Method: Buffer.concat(list[, totalLength])
list{Array} List of Buffer objects to concattotalLength{Number} Total length of the Buffers in the list when concatenated- Return: {Buffer}
Returns a new Buffer which is the result of concatenating all the Buffers in
the list together.
If the list has no items, or if the totalLength is 0, then a new zero-length
Buffer is returned.
If totalLength is not provided, it is calculated from the Buffers in the
list. This, however, adds an additional loop to the function, so it is faster
to provide the length explicitly.
Example: build a single Buffer from a list of three Buffers:
const buf1 = Buffer.alloc(10);
const buf2 = Buffer.alloc(14);
const buf3 = Buffer.alloc(18);
const totalLength = buf1.length + buf2.length + buf3.length;
// Prints: 42
console.log(totalLength);
const bufA = Buffer.concat([buf1, buf2, buf3], totalLength);
// Prints: <Buffer 00 00 00 00 ...>
console.log(bufA);
// Prints: 42
console.log(bufA.length);
Class Method: Buffer.from(array)
array{Array}
Allocates a new Buffer using an array of octets.
// Creates a new Buffer containing ASCII bytes of the string 'buffer'
const buf = Buffer.from([0x62, 0x75, 0x66, 0x66, 0x65, 0x72]);
A TypeError will be thrown if array is not an Array.
Class Method: Buffer.from(arrayBuffer[, byteOffset[, length]])
arrayBuffer{ArrayBuffer} The.bufferproperty of aTypedArrayor anew ArrayBuffer()byteOffset{Number} Default:0length{Number} Default:arrayBuffer.length - byteOffset
When passed a reference to the .buffer property of a TypedArray instance,
the newly created Buffer will share the same allocated memory as the
TypedArray.
const arr = new Uint16Array(2);
arr[0] = 5000;
arr[1] = 4000;
// Shares memory with `arr`
const buf = Buffer.from(arr.buffer);
// Prints: <Buffer 88 13 a0 0f>
console.log(buf);
// Changing the original Uint16Array changes the Buffer also
arr[1] = 6000;
// Prints: <Buffer 88 13 70 17>
console.log(buf);
The optional byteOffset and length arguments specify a memory range within
the arrayBuffer that will be shared by the Buffer.
const ab = new ArrayBuffer(10);
const buf = Buffer.from(ab, 0, 2);
// Prints: 2
console.log(buf.length);
A TypeError will be thrown if arrayBuffer is not an ArrayBuffer.
Class Method: Buffer.from(buffer)
buffer{Buffer}
Copies the passed buffer data onto a new Buffer instance.
const buf1 = Buffer.from('buffer');
const buf2 = Buffer.from(buf1);
buf1[0] = 0x61;
// Prints: auffer
console.log(buf1.toString());
// Prints: buffer
console.log(buf2.toString());
A TypeError will be thrown if buffer is not a Buffer.
Class Method: Buffer.from(str[, encoding])
str{String} String to encode.encoding{String} Encoding to use, Default:'utf8'
Creates a new Buffer containing the given JavaScript string str. If
provided, the encoding parameter identifies the character encoding.
If not provided, encoding defaults to 'utf8'.
const buf1 = Buffer.from('this is a tést');
// Prints: this is a tést
console.log(buf1.toString());
// Prints: this is a tC)st
console.log(buf1.toString('ascii'));
const buf2 = Buffer.from('7468697320697320612074c3a97374', 'hex');
// Prints: this is a tést
console.log(buf2.toString());
A TypeError will be thrown if str is not a string.
Class Method: Buffer.isBuffer(obj)
obj{Object}- Return: {Boolean}
Returns 'true' if obj is a Buffer.
Class Method: Buffer.isEncoding(encoding)
encoding{String} The encoding string to test- Return: {Boolean}
Returns true if the encoding is a valid encoding argument, or false
otherwise.
buf[index]
The index operator [index] can be used to get and set the octet at position
index in the Buffer. The values refer to individual bytes, so the legal value
range is between 0x00 and 0xFF (hex) or 0 and 255 (decimal).
Example: copy an ASCII string into a Buffer, one byte at a time:
const str = 'Node.js';
const buf = Buffer.allocUnsafe(str.length);
for (let i = 0; i < str.length ; i++) {
buf[i] = str.charCodeAt(i);
}
// Prints: Node.js
console.log(buf.toString('ascii'));
buf.compare(target[, targetStart[, targetEnd[, sourceStart[, sourceEnd]]]])
target{Buffer}targetStart{Integer} The offset withintargetat which to begin comparison. default =0.targetEnd{Integer} The offset withtargetat which to end comparison. Ignored whentargetStartisundefined. default =target.byteLength.sourceStart{Integer} The offset withinbufat which to begin comparison. Ignored whentargetStartisundefined. default =0sourceEnd{Integer} The offset withinbufat which to end comparison. Ignored whentargetStartisundefined. default =buf.byteLength.- Return: {Number}
Compares two Buffer instances and returns a number indicating whether buf
comes before, after, or is the same as the target in sort order.
Comparison is based on the actual sequence of bytes in each Buffer.
0is returned iftargetis the same asbuf1is returned iftargetshould come beforebufwhen sorted.-1is returned iftargetshould come afterbufwhen sorted.
const buf1 = Buffer.from('ABC');
const buf2 = Buffer.from('BCD');
const buf3 = Buffer.from('ABCD');
// Prints: 0
console.log(buf1.compare(buf1));
// Prints: -1
console.log(buf1.compare(buf2));
// Prints: -1
console.log(buf1.compare(buf3));
// Prints: 1
console.log(buf2.compare(buf1));
// Prints: 1
console.log(buf2.compare(buf3));
// Prints: [ <Buffer 41 42 43>, <Buffer 41 42 43 44>, <Buffer 42 43 44> ]
// (This result is equal to: [buf1, buf3, buf2])
console.log([buf1, buf2, buf3].sort(Buffer.compare));
The optional targetStart, targetEnd, sourceStart, and sourceEnd
arguments can be used to limit the comparison to specific ranges within the two
Buffer objects.
const buf1 = Buffer.from([1, 2, 3, 4, 5, 6, 7, 8, 9]);
const buf2 = Buffer.from([5, 6, 7, 8, 9, 1, 2, 3, 4]);
// Prints: 0
console.log(buf1.compare(buf2, 5, 9, 0, 4));
// Prints: -1
console.log(buf1.compare(buf2, 0, 6, 4));
// Prints: 1
console.log(buf1.compare(buf2, 5, 6, 5));
A RangeError will be thrown if: targetStart < 0, sourceStart < 0,
targetEnd > target.byteLength or sourceEnd > source.byteLength.
buf.copy(targetBuffer[, targetStart[, sourceStart[, sourceEnd]]])
targetBuffer{Buffer} Buffer to copy intotargetStart{Number} Default: 0sourceStart{Number} Default: 0sourceEnd{Number} Default:buffer.length- Return: {Number} The number of bytes copied.
Copies data from a region of this Buffer to a region in the target Buffer even if the target memory region overlaps with the source.
Example: build two Buffers, then copy buf1 from byte 16 through byte 19
into buf2, starting at the 8th byte in buf2.
const buf1 = Buffer.allocUnsafe(26);
const buf2 = Buffer.allocUnsafe(26).fill('!');
for (let i = 0 ; i < 26 ; i++) {
// 97 is the decimal ASCII value for 'a'
buf1[i] = i + 97;
}
buf1.copy(buf2, 8, 16, 20);
// Prints: !!!!!!!!qrst!!!!!!!!!!!!!
console.log(buf2.toString('ascii', 0, 25));
Example: Build a single Buffer, then copy data from one region to an overlapping region in the same Buffer
const buf = Buffer.allocUnsafe(26);
for (var i = 0 ; i < 26 ; i++) {
// 97 is the decimal ASCII value for 'a'
buf[i] = i + 97;
}
buf.copy(buf, 0, 4, 10);
// Prints: efghijghijklmnopqrstuvwxyz
console.log(buf.toString());
buf.entries()
- Return: {Iterator}
Creates and returns an iterator of [index, byte] pairs from the contents of
buf.
const buf = Buffer.from('buffer');
// Prints:
// [0, 98]
// [1, 117]
// [2, 102]
// [3, 102]
// [4, 101]
// [5, 114]
for (var pair of buf.entries()) {
console.log(pair);
}
buf.equals(otherBuffer)
otherBuffer{Buffer}- Return: {Boolean}
Returns a boolean indicating whether this and otherBuffer have exactly the
same bytes.
const buf1 = Buffer.from('ABC');
const buf2 = Buffer.from('414243', 'hex');
const buf3 = Buffer.from('ABCD');
// Prints: true
console.log(buf1.equals(buf2));
// Prints: false
console.log(buf1.equals(buf3));
buf.fill(value[, offset[, end]][, encoding])
value{String|Buffer|Number}offset{Number} Default: 0end{Number} Default:buf.lengthencoding{String} Default:'utf8'- Return: {Buffer}
Fills the Buffer with the specified value. If the offset (defaults to 0)
and end (defaults to buf.length) are not given the entire buffer will be
filled. The method returns a reference to the Buffer, so calls can be chained.
This is meant as a small simplification to creating a Buffer. Allowing the
creation and fill of the Buffer to be done on a single line:
const b = Buffer.allocUnsafe(50).fill('h');
// Prints: hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
console.log(b.toString());
encoding is only relevant if value is a string. Otherwise it is ignored.
value is coerced to a uint32 value if it is not a String or Number.
The fill() operation writes bytes into the Buffer dumbly. If the final write
falls in between a multi-byte character then whatever bytes fit into the buffer
are written.
// Prints: <Buffer c8 a2 c8>
console.log(Buffer.allocUnsafe(3).fill('\u0222'));
buf.indexOf(value[, byteOffset][, encoding])
value{String|Buffer|Number}byteOffset{Number} Default: 0encoding{String} Default:'utf8'- Return: {Number}
Operates similar to [Array#indexOf()][] in that it returns either the
starting index position of value in Buffer or -1 if the Buffer does not
contain value. The value can be a String, Buffer or Number. Strings are by
default interpreted as UTF8. Buffers will use the entire Buffer (to compare a
partial Buffer use buf.slice()). Numbers will be interpreted as unsigned 8-bit
integer values between 0 and 255.
const buf = Buffer.from('this is a buffer');
// Prints: 0
console.log(buf.indexOf('this')));
// Prints: 2
console.log(buf.indexOf('is'));
// Prints: 8
console.log(buf.indexOf(Buffer.from('a buffer')));
// Prints: 8
// (97 is the decimal ASCII value for 'a')
console.log(buf.indexOf(97));
// Prints: -1
console.log(buf.indexOf(Buffer.from('a buffer example')));
// Prints: 8
console.log(buf.indexOf(Buffer.from('a buffer example').slice(0, 8)));
const utf16Buffer = Buffer.from('\u039a\u0391\u03a3\u03a3\u0395', 'ucs2');
// Prints: 4
console.log(utf16Buffer.indexOf('\u03a3', 0, 'ucs2'));
// Prints: 6
console.log(utf16Buffer.indexOf('\u03a3', -4, 'ucs2'));
buf.includes(value[, byteOffset][, encoding])
value{String|Buffer|Number}byteOffset{Number} Default: 0encoding{String} Default:'utf8'- Return: {Boolean}
Operates similar to [Array#includes()][]. The value can be a String, Buffer
or Number. Strings are interpreted as UTF8 unless overridden with the
encoding argument. Buffers will use the entire Buffer (to compare a partial
Buffer use buf.slice()). Numbers will be interpreted as unsigned 8-bit
integer values between 0 and 255.
The byteOffset indicates the index in buf where searching begins.
const buf = Buffer.from('this is a buffer');
// Prints: true
console.log(buf.includes('this'));
// Prints: true
console.log(buf.includes('is'));
// Prints: true
console.log(buf.includes(Buffer.from('a buffer')));
// Prints: true
// (97 is the decimal ASCII value for 'a')
console.log(buf.includes(97));
// Prints: false
console.log(buf.includes(Buffer.from('a buffer example')));
// Prints: true
console.log(buf.includes(Buffer.from('a buffer example').slice(0, 8)));
// Prints: false
console.log(buf.includes('this', 4));
buf.keys()
- Return: {Iterator}
Creates and returns an iterator of buf keys (indices).
const buf = Buffer.from('buffer');
// Prints:
// 0
// 1
// 2
// 3
// 4
// 5
for (var key of buf.keys()) {
console.log(key);
}
buf.lastIndexOf(value[, byteOffset][, encoding])
value{String|Buffer|Number}byteOffset{Number} Default:buf.lengthencoding{String} Default:'utf8'- Return: {Number}
Identical to [Buffer#indexOf()][], but searches the Buffer from back to front
instead of front to back. Returns the starting index position of value in
Buffer or -1 if the Buffer does not contain value. The value can be a
String, Buffer or Number. Strings are by default interpreted as UTF8. If
byteOffset is provided, will return the last match that begins at or before
byteOffset.
const buf = Buffer.from('this buffer is a buffer');
// Prints: 0
console.log(buf.lastIndexOf('this'));
// Prints: 17
console.log(buf.lastIndexOf('buffer'));
// Prints: 17
console.log(buf.lastIndexOf(Buffer.from('buffer')));
// Prints: 15
// (97 is the decimal ASCII value for 'a')
console.log(buf.lastIndexOf(97));
// Prints: -1
console.log(buf.lastIndexOf(Buffer.from('yolo')));
// Prints: 5
console.log(buf.lastIndexOf('buffer', 5));
// Prints: -1
console.log(buf.lastIndexOf('buffer', 4));
const utf16Buffer = Buffer.from('\u039a\u0391\u03a3\u03a3\u0395', 'ucs2');
// Prints: 6
console.log(utf16Buffer.lastIndexOf('\u03a3', null, 'ucs2'));
// Prints: 4
console.log(utf16Buffer.lastIndexOf('\u03a3', -5, 'ucs2'));
buf.length
- {Number}
Returns the amount of memory allocated for the Buffer in number of bytes. Note that this does not necessarily reflect the amount of usable data within the Buffer. For instance, in the example below, a Buffer with 1234 bytes is allocated, but only 11 ASCII bytes are written.
const buf = Buffer.alloc(1234);
// Prints: 1234
console.log(buf.length);
buf.write('some string', 0, 'ascii');
// Prints: 1234
console.log(buf.length);
While the length property is not immutable, changing the value of length
can result in undefined and inconsistent behavior. Applications that wish to
modify the length of a Buffer should therefore treat length as read-only and
use buf.slice() to create a new Buffer.
var buf = Buffer.allocUnsafe(10);
buf.write('abcdefghj', 0, 'ascii');
// Prints: 10
console.log(buf.length);
buf = buf.slice(0, 5);
// Prints: 5
console.log(buf.length);
buf.readDoubleBE(offset[, noAssert])
buf.readDoubleLE(offset[, noAssert])
offset{Number}0 <= offset <= buf.length - 8noAssert{Boolean} Default: false- Return: {Number}
Reads a 64-bit double from the Buffer at the specified offset with specified
endian format (readDoubleBE() returns big endian, readDoubleLE() returns
little endian).
Setting noAssert to true skips validation of the offset. This allows the
offset to be beyond the end of the Buffer.
const buf = Buffer.from([1, 2, 3, 4, 5, 6, 7, 8]);
// Prints: 8.20788039913184e-304
console.log(buf.readDoubleBE());
// Prints: 5.447603722011605e-270
console.log(buf.readDoubleLE());
// Throws an exception: RangeError: Index out of range
console.log(buf.readDoubleLE(1));
// Warning: reads passed end of buffer!
// This will result in a segmentation fault! Don't do this!
console.log(buf.readDoubleLE(1, true));
buf.readFloatBE(offset[, noAssert])
buf.readFloatLE(offset[, noAssert])
offset{Number}0 <= offset <= buf.length - 4noAssert{Boolean} Default: false- Return: {Number}
Reads a 32-bit float from the Buffer at the specified offset with specified
endian format (readFloatBE() returns big endian, readFloatLE() returns
little endian).
Setting noAssert to true skips validation of the offset. This allows the
offset to be beyond the end of the Buffer.
const buf = Buffer.from([1, 2, 3, 4]);
// Prints: 2.387939260590663e-38
console.log(buf.readFloatBE());
// Prints: 1.539989614439558e-36
console.log(buf.readFloatLE());
// Throws an exception: RangeError: Index out of range
console.log(buf.readFloatLE(1));
// Warning: reads passed end of buffer!
// This will result in a segmentation fault! Don't do this!
console.log(buf.readFloatLE(1, true));
buf.readInt8(offset[, noAssert])
offset{Number}0 <= offset <= buf.length - 1noAssert{Boolean} Default: false- Return: {Number}
Reads a signed 8-bit integer from the Buffer at the specified offset.
Setting noAssert to true skips validation of the offset. This allows the
offset to be beyond the end of the Buffer.
Integers read from the Buffer are interpreted as two's complement signed values.
const buf = Buffer.from([-1, 5]);
// Prints: -1
console.log(buf.readInt8(0));
// Prints: 5
console.log(buf.readInt8(1));
// Throws an exception: RangeError: Index out of range
console.log(buf.readInt8(2));
buf.readInt16BE(offset[, noAssert])
buf.readInt16LE(offset[, noAssert])
offset{Number}0 <= offset <= buf.length - 2noAssert{Boolean} Default: false- Return: {Number}
Reads a signed 16-bit integer from the Buffer at the specified offset with
the specified endian format (readInt16BE() returns big endian,
readInt16LE() returns little endian).
Setting noAssert to true skips validation of the offset. This allows the
offset to be beyond the end of the Buffer.
Integers read from the Buffer are interpreted as two's complement signed values.
const buf = Buffer.from([0, 5]);
// Prints: 5
console.log(buf.readInt16BE());
// Prints: 1280
console.log(buf.readInt16LE(1));
// Throws an exception: RangeError: Index out of range
console.log(buf.readInt16LE(1));
buf.readInt32BE(offset[, noAssert])
buf.readInt32LE(offset[, noAssert])
offset{Number}0 <= offset <= buf.length - 4noAssert{Boolean} Default: false- Return: {Number}
Reads a signed 32-bit integer from the Buffer at the specified offset with
the specified endian format (readInt32BE() returns big endian,
readInt32LE() returns little endian).
Setting noAssert to true skips validation of the offset. This allows the
offset to be beyond the end of the Buffer.
Integers read from the Buffer are interpreted as two's complement signed values.
const buf = Buffer.from([0, 0, 0, 5]);
// Prints: 5
console.log(buf.readInt32BE());
// Prints: 83886080
console.log(buf.readInt32LE());
// Throws an exception: RangeError: Index out of range
console.log(buf.readInt32LE(1));
buf.readIntBE(offset, byteLength[, noAssert])
buf.readIntLE(offset, byteLength[, noAssert])
offset{Number}0 <= offset <= buf.length - byteLengthbyteLength{Number}0 < byteLength <= 6noAssert{Boolean} Default: false- Return: {Number}
Reads byteLength number of bytes from the Buffer at the specified offset
and interprets the result as a two's complement signed value. Supports up to 48
bits of accuracy. For example:
const buf = Buffer.from([0x12, 0x34, 0x56, 0x78, 0x90, 0xab]);
// Prints: 1234567890ab
console.log(buf.readIntLE(0, 6).toString(16));
// Prints: -546f87a9cbee
console.log(buf.readIntBE(0, 6).toString(16));
// Throws an exception: RangeError: Index out of range
console.log(buf.readIntBE(1, 6).toString(16));
Setting noAssert to true skips validation of the offset. This allows the
offset to be beyond the end of the Buffer.
buf.readUInt8(offset[, noAssert])
offset{Number}0 <= offset <= buf.length - 1noAssert{Boolean} Default: false- Return: {Number}
Reads an unsigned 8-bit integer from the Buffer at the specified offset.
Setting noAssert to true skips validation of the offset. This allows the
offset to be beyond the end of the Buffer.
const buf = Buffer.from([1, -2]);
// Prints: 1
console.log(buf.readUInt8(0));
// Prints: 254
console.log(buf.readUInt8(1));
// Throws an exception: RangeError: Index out of range
console.log(buf.readUInt8(2));
buf.readUInt16BE(offset[, noAssert])
buf.readUInt16LE(offset[, noAssert])
offset{Number}0 <= offset <= buf.length - 2noAssert{Boolean} Default: false- Return: {Number}
Reads an unsigned 16-bit integer from the Buffer at the specified offset with
specified endian format (readUInt16BE() returns big endian,
readUInt16LE() returns little endian).
Setting noAssert to true skips validation of the offset. This allows the
offset to be beyond the end of the Buffer.
Example:
const buf = Buffer.from([0x12, 0x34, 0x56]);
// Prints: 1234
console.log(buf.readUInt16BE(0).toString(16));
// Prints: 3412
console.log(buf.readUInt16LE(0).toString(16));
// Prints: 3456
console.log(buf.readUInt16BE(1).toString(16));
// Prints: 5634
console.log(buf.readUInt16LE(1).toString(16));
// Throws an exception: RangeError: Index out of range
console.log(buf.readUInt16LE(2).toString(16));
buf.readUInt32BE(offset[, noAssert])
buf.readUInt32LE(offset[, noAssert])
offset{Number}0 <= offset <= buf.length - 4noAssert{Boolean} Default: false- Return: {Number}
Reads an unsigned 32-bit integer from the Buffer at the specified offset with
specified endian format (readUInt32BE() returns big endian,
readUInt32LE() returns little endian).
Setting noAssert to true skips validation of the offset. This allows the
offset to be beyond the end of the Buffer.
Example:
const buf = Buffer.from([0x12, 0x34, 0x56, 0x78]);
// Prints: 12345678
console.log(buf.readUInt32BE(0).toString(16));
// Prints: 78563412
console.log(buf.readUInt32LE(0).toString(16));
// Throws an exception: RangeError: Index out of range
console.log(buf.readUInt32LE(1).toString(16));
buf.readUIntBE(offset, byteLength[, noAssert])
buf.readUIntLE(offset, byteLength[, noAssert])
offset{Number}0 <= offset <= buf.length - byteLengthbyteLength{Number}0 < byteLength <= 6noAssert{Boolean} Default: false- Return: {Number}
Reads byteLength number of bytes from the Buffer at the specified offset
and interprets the result as an unsigned integer. Supports up to 48
bits of accuracy. For example:
const buf = Buffer.from([0x12, 0x34, 0x56, 0x78, 0x90, 0xab]);
// Prints: 1234567890ab
console.log(buf.readUIntLE(0, 6).toString(16));
// Prints: ab9078563412
console.log(buf.readUIntBE(0, 6).toString(16));
// Throws an exception: RangeError: Index out of range
console.log(buf.readUIntBE(1, 6).toString(16));
Setting noAssert to true skips validation of the offset. This allows the
offset to be beyond the end of the Buffer.
buf.slice([start[, end]])
start{Number} Default: 0end{Number} Default:buffer.length- Return: {Buffer}
Returns a new Buffer that references the same memory as the original, but
offset and cropped by the start and end indices.
Note that modifying the new Buffer slice will modify the memory in the original Buffer because the allocated memory of the two objects overlap.
Example: build a Buffer with the ASCII alphabet, take a slice, then modify one byte from the original Buffer.
const buf1 = Buffer.allocUnsafe(26);
for (var i = 0 ; i < 26 ; i++) {
// 97 is the decimal ASCII value for 'a'
buf1[i] = i + 97;
}
const buf2 = buf1.slice(0, 3);
// Prints: abc
console.log(buf2.toString('ascii', 0, buf2.length));
buf1[0] = 33;
// Prints: !bc
console.log(buf2.toString('ascii', 0, buf2.length));
Specifying negative indexes causes the slice to be generated relative to the end of the Buffer rather than the beginning.
const buf = Buffer.from('buffer');
// Prints: buffe
// (Equivalent to buf.slice(0, 5))
console.log(buf.slice(-6, -1).toString());
// Prints: buff
// (Equivalent to buf.slice(0, 4))
console.log(buf.slice(-6, -2).toString());
// Prints: uff
// (Equivalent to buf.slice(1, 4))
console.log(buf.slice(-5, -2).toString());
buf.swap16()
- Return: {Buffer}
Interprets the Buffer as an array of unsigned 16-bit integers and swaps
the byte-order in-place. Throws a RangeError if the Buffer length is
not a multiple of 16 bits. The method returns a reference to the Buffer, so
calls can be chained.
const buf1 = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8]);
// Prints: <Buffer 01 02 03 04 05 06 07 08>
console.log(buf1);
buf1.swap16();
// Prints: <Buffer 02 01 04 03 06 05 08 07>
console.log(buf1);
const buf2 = Buffer.from([0x1, 0x2, 0x3]);
// Throws an exception: RangeError: Buffer size must be a multiple of 16-bits
buf2.swap32();
buf.swap32()
- Return: {Buffer}
Interprets the Buffer as an array of unsigned 32-bit integers and swaps
the byte-order in-place. Throws a RangeError if the Buffer length is
not a multiple of 32 bits. The method returns a reference to the Buffer, so
calls can be chained.
const buf1 = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8]);
// Prints <Buffer 01 02 03 04 05 06 07 08>
console.log(buf1);
buf1.swap32();
// Prints <Buffer 04 03 02 01 08 07 06 05>
console.log(buf1);
const buf2 = Buffer.from([0x1, 0x2, 0x3]);
// Throws an exception: RangeError: Buffer size must be a multiple of 32-bits
buf2.swap32();
buf.swap64()
- Return: {Buffer}
Interprets the Buffer as an array of 64-bit numbers and swaps
the byte-order in-place. Throws a RangeError if the Buffer length is
not a multiple of 64 bits. The method returns a reference to the Buffer, so
calls can be chained.
const buf1 = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8]);
// Prints <Buffer 01 02 03 04 05 06 07 08>
console.log(buf1);
buf1.swap64();
// Prints <Buffer 08 07 06 05 04 03 02 01>
console.log(buf1);
const buf2 = Buffer.from([0x1, 0x2, 0x3]);
// Throws an exception: RangeError: Buffer size must be a multiple of 64-bits
buf2.swap64();
Note that JavaScript cannot encode 64-bit integers. This method is intended for working with 64-bit floats.
buf.toString([encoding[, start[, end]]])
encoding{String} Default:'utf8'start{Number} Default: 0end{Number} Default:buffer.length- Return: {String}
Decodes and returns a string from the Buffer data using the specified
character set encoding.
const buf1 = Buffer.allocUnsafe(26);
for (var i = 0 ; i < 26 ; i++) {
// 97 is the decimal ASCII value for 'a'
buf1[i] = i + 97;
}
// Prints: abcdefghijklmnopqrstuvwxyz
console.log(buf.toString('ascii'));
// Prints: abcde
console.log(buf.toString('ascii', 0, 5));
const buf2 = Buffer.from('tést');
// Prints: tés
console.log(buf.toString('utf8', 0, 3));
// Prints: tés
console.log(buf.toString(undefined, 0, 3));
buf.toJSON()
- Return: {Object}
Returns a JSON representation of buf. JSON.stringify() implicitly calls
this function when stringifying a Buffer instance.
Example:
const buf = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5]);
const json = JSON.stringify(buf);
// Prints: {"type":"Buffer","data":[1,2,3,4,5]}
console.log(json);
const copy = JSON.parse(json, (key, value) => {
return value && value.type === 'Buffer'
? Buffer.from(value.data)
: value;
});
// Prints: <Buffer 01 02 03 04 05>
console.log(copy);
buf.values()
- Return: {Iterator}
Creates and returns an iterator for buf values (bytes). This function is
called automatically when a Buffer is used in a for..of statement.
const buf = Buffer.from('buffer');
// Prints:
// 98
// 117
// 102
// 102
// 101
// 114
for (var value of buf.values()) {
console.log(value);
}
// Prints:
// 98
// 117
// 102
// 102
// 101
// 114
for (var value of buf) {
console.log(value);
}
buf.write(string[, offset[, length]][, encoding])
string{String} Bytes to be written to bufferoffset{Number} Default: 0length{Number} Default:buffer.length - offsetencoding{String} Default:'utf8'- Return: {Number} Numbers of bytes written
Writes string to the Buffer at offset using the given encoding.
The length parameter is the number of bytes to write. If the Buffer did not
contain enough space to fit the entire string, only a partial amount of the
string will be written however, it will not write only partially encoded
characters.
const buf = Buffer.allocUnsafe(256);
const len = buf.write('\u00bd + \u00bc = \u00be', 0);
// Prints: 12 bytes: ½ + ¼ = ¾
console.log(`${len} bytes: ${buf.toString('utf8', 0, len)}`);
buf.writeDoubleBE(value, offset[, noAssert])
buf.writeDoubleLE(value, offset[, noAssert])
value{Number} Bytes to be written to Bufferoffset{Number}0 <= offset <= buf.length - 8noAssert{Boolean} Default: false- Return: {Number} The offset plus the number of written bytes
Writes value to the Buffer at the specified offset with specified endian
format (writeDoubleBE() writes big endian, writeDoubleLE() writes little
endian). The value argument should be a valid 64-bit double. Behavior is
not defined when value is anything other than a 64-bit double.
Set noAssert to true to skip validation of value and offset. This means
that value may be too large for the specific function and offset may be
beyond the end of the Buffer leading to the values being silently dropped. This
should not be used unless you are certain of correctness.
Example:
const buf = Buffer.allocUnsafe(8);
buf.writeDoubleBE(0xdeadbeefcafebabe, 0);
// Prints: <Buffer 43 eb d5 b7 dd f9 5f d7>
console.log(buf);
buf.writeDoubleLE(0xdeadbeefcafebabe, 0);
// Prints: <Buffer d7 5f f9 dd b7 d5 eb 43>
console.log(buf);
buf.writeFloatBE(value, offset[, noAssert])
buf.writeFloatLE(value, offset[, noAssert])
value{Number} Bytes to be written to Bufferoffset{Number}0 <= offset <= buf.length - 4noAssert{Boolean} Default: false- Return: {Number} The offset plus the number of written bytes
Writes value to the Buffer at the specified offset with specified endian
format (writeFloatBE() writes big endian, writeFloatLE() writes little
endian). Behavior is not defined when value is anything other than a 32-bit
float.
Set noAssert to true to skip validation of value and offset. This means
that value may be too large for the specific function and offset may be
beyond the end of the Buffer leading to the values being silently dropped. This
should not be used unless you are certain of correctness.
Example:
const buf = Buffer.allocUnsafe(4);
buf.writeFloatBE(0xcafebabe, 0);
// Prints: <Buffer 4f 4a fe bb>
console.log(buf);
buf.writeFloatLE(0xcafebabe, 0);
// Prints: <Buffer bb fe 4a 4f>
console.log(buf);
buf.writeInt8(value, offset[, noAssert])
value{Number} Bytes to be written to Bufferoffset{Number}0 <= offset <= buf.length - 1noAssert{Boolean} Default: false- Return: {Number} The offset plus the number of written bytes
Writes value to the Buffer at the specified offset. The value should be a
valid signed 8-bit integer. Behavior is not defined when value is anything
other than a signed 8-bit integer.
Set noAssert to true to skip validation of value and offset. This means
that value may be too large for the specific function and offset may be
beyond the end of the Buffer leading to the values being silently dropped. This
should not be used unless you are certain of correctness.
The value is interpreted and written as a two's complement signed integer.
const buf = Buffer.allocUnsafe(2);
buf.writeInt8(2, 0);
buf.writeInt8(-2, 1);
// Prints: <Buffer 02 fe>
console.log(buf);
buf.writeInt16BE(value, offset[, noAssert])
buf.writeInt16LE(value, offset[, noAssert])
value{Number} Bytes to be written to Bufferoffset{Number}0 <= offset <= buf.length - 2noAssert{Boolean} Default: false- Return: {Number} The offset plus the number of written bytes
Writes value to the Buffer at the specified offset with specified endian
format (writeInt16BE() writes big endian, writeInt16LE() writes little
endian). The value should be a valid signed 16-bit integer. Behavior is
not defined when value is anything other than a signed 16-bit integer.
Set noAssert to true to skip validation of value and offset. This means
that value may be too large for the specific function and offset may be
beyond the end of the Buffer leading to the values being silently dropped. This
should not be used unless you are certain of correctness.
The value is interpreted and written as a two's complement signed integer.
const buf = Buffer.allocUnsafe(4);
buf.writeInt16BE(0x0102, 0);
buf.writeInt16LE(0x0304, 2);
// Prints: <Buffer 01 02 04 03>
console.log(buf);
buf.writeInt32BE(value, offset[, noAssert])
buf.writeInt32LE(value, offset[, noAssert])
value{Number} Bytes to be written to Bufferoffset{Number}0 <= offset <= buf.length - 4noAssert{Boolean} Default: false- Return: {Number} The offset plus the number of written bytes
Writes value to the Buffer at the specified offset with specified endian
format (writeInt32BE() writes big endian, writeInt32LE() writes little
endian). The value should be a valid signed 32-bit integer. Behavior is
not defined when value is anything other than a signed 32-bit integer.
Set noAssert to true to skip validation of value and offset. This means
that value may be too large for the specific function and offset may be
beyond the end of the Buffer leading to the values being silently dropped. This
should not be used unless you are certain of correctness.
The value is interpreted and written as a two's complement signed integer.
const buf = Buffer.allocUnsafe(8);
buf.writeInt32BE(0x01020304, 0);
buf.writeInt32LE(0x05060708, 4);
// Prints: <Buffer 01 02 03 04 08 07 06 05>
console.log(buf);
buf.writeIntBE(value, offset, byteLength[, noAssert])
buf.writeIntLE(value, offset, byteLength[, noAssert])
value{Number} Bytes to be written to Bufferoffset{Number}0 <= offset <= buf.length - byteLengthbyteLength{Number}0 < byteLength <= 6noAssert{Boolean} Default: false- Return: {Number} The offset plus the number of written bytes
Writes value to the Buffer at the specified offset and byteLength.
Supports up to 48 bits of accuracy. For example:
const buf = Buffer.allocUnsafe(6);
buf.writeUIntBE(0x1234567890ab, 0, 6);
// Prints: <Buffer 12 34 56 78 90 ab>
console.log(buf);
buf.writeUIntLE(0x1234567890ab, 0, 6);
// Prints: <Buffer ab 90 78 56 34 12>
console.log(buf);
Set noAssert to true to skip validation of value and offset. This means
that value may be too large for the specific function and offset may be
beyond the end of the Buffer leading to the values being silently dropped. This
should not be used unless you are certain of correctness.
Behavior is not defined when value is anything other than an integer.
buf.writeUInt8(value, offset[, noAssert])
value{Number} Bytes to be written to Bufferoffset{Number}0 <= offset <= buf.length - 1noAssert{Boolean} Default: false- Return: {Number} The offset plus the number of written bytes
Writes value to the Buffer at the specified offset. The value should be a
valid unsigned 8-bit integer. Behavior is not defined when value is anything
other than an unsigned 8-bit integer.
Set noAssert to true to skip validation of value and offset. This means
that value may be too large for the specific function and offset may be
beyond the end of the Buffer leading to the values being silently dropped. This
should not be used unless you are certain of correctness.
Example:
const buf = Buffer.allocUnsafe(4);
buf.writeUInt8(0x3, 0);
buf.writeUInt8(0x4, 1);
buf.writeUInt8(0x23, 2);
buf.writeUInt8(0x42, 3);
// Prints: <Buffer 03 04 23 42>
console.log(buf);
buf.writeUInt16BE(value, offset[, noAssert])
buf.writeUInt16LE(value, offset[, noAssert])
value{Number} Bytes to be written to Bufferoffset{Number}0 <= offset <= buf.length - 2noAssert{Boolean} Default: false- Return: {Number} The offset plus the number of written bytes
Writes value to the Buffer at the specified offset with specified endian
format (writeUInt16BE() writes big endian, writeUInt16LE() writes little
endian). The value should be a valid unsigned 16-bit integer. Behavior is
not defined when value is anything other than an unsigned 16-bit integer.
Set noAssert to true to skip validation of value and offset. This means
that value may be too large for the specific function and offset may be
beyond the end of the Buffer leading to the values being silently dropped. This
should not be used unless you are certain of correctness.
Example:
const buf = Buffer.allocUnsafe(4);
buf.writeUInt16BE(0xdead, 0);
buf.writeUInt16BE(0xbeef, 2);
// Prints: <Buffer de ad be ef>
console.log(buf);
buf.writeUInt16LE(0xdead, 0);
buf.writeUInt16LE(0xbeef, 2);
// Prints: <Buffer ad de ef be>
console.log(buf);
buf.writeUInt32BE(value, offset[, noAssert])
buf.writeUInt32LE(value, offset[, noAssert])
value{Number} Bytes to be written to Bufferoffset{Number}0 <= offset <= buf.length - 4noAssert{Boolean} Default: false- Return: {Number} The offset plus the number of written bytes
Writes value to the Buffer at the specified offset with specified endian
format (writeUInt32BE() writes big endian, writeUInt32LE() writes little
endian). The value should be a valid unsigned 32-bit integer. Behavior is
not defined when value is anything other than an unsigned 32-bit integer.
Set noAssert to true to skip validation of value and offset. This means
that value may be too large for the specific function and offset may be
beyond the end of the Buffer leading to the values being silently dropped. This
should not be used unless you are certain of correctness.
Example:
const buf = Buffer.allocUnsafe(4);
buf.writeUInt32BE(0xfeedface, 0);
// Prints: <Buffer fe ed fa ce>
console.log(buf);
buf.writeUInt32LE(0xfeedface, 0);
// Prints: <Buffer ce fa ed fe>
console.log(buf);
buf.writeUIntBE(value, offset, byteLength[, noAssert])
buf.writeUIntLE(value, offset, byteLength[, noAssert])
value{Number} Bytes to be written to Bufferoffset{Number}0 <= offset <= buf.length - byteLengthbyteLength{Number}0 < byteLength <= 6noAssert{Boolean} Default: false- Return: {Number} The offset plus the number of written bytes
Writes value to the Buffer at the specified offset and byteLength.
Supports up to 48 bits of accuracy. For example:
const buf = Buffer.allocUnsafe(6);
buf.writeUIntBE(0x1234567890ab, 0, 6);
// Prints: <Buffer 12 34 56 78 90 ab>
console.log(buf);
buf.writeUIntLE(0x1234567890ab, 0, 6);
// Prints: <Buffer ab 90 78 56 34 12>
console.log(buf);
Set noAssert to true to skip validation of value and offset. This means
that value may be too large for the specific function and offset may be
beyond the end of the Buffer leading to the values being silently dropped. This
should not be used unless you are certain of correctness.
Behavior is not defined when value is anything other than an unsigned integer.
buffer.INSPECT_MAX_BYTES
- {Number} Default: 50
Returns the maximum number of bytes that will be returned when
buf.inspect() is called. This can be overridden by user modules. See
util.inspect() for more details on buf.inspect() behavior.
Note that this is a property on the buffer module as returned by
require('buffer'), not on the Buffer global or a Buffer instance.
Class: SlowBuffer
Stability: 0 - Deprecated: Use [`Buffer.allocUnsafeSlow()`] instead.
Returns an un-pooled Buffer.
In order to avoid the garbage collection overhead of creating many individually
allocated Buffers, by default allocations under 4KB are sliced from a single
larger allocated object. This approach improves both performance and memory
usage since v8 does not need to track and cleanup as many Persistent objects.
In the case where a developer may need to retain a small chunk of memory from a
pool for an indeterminate amount of time, it may be appropriate to create an
un-pooled Buffer instance using SlowBuffer then copy out the relevant bits.
// Need to keep around a few small chunks of memory
const store = [];
socket.on('readable', () => {
const data = socket.read();
// Allocate for retained data
const sb = SlowBuffer(10);
// Copy the data into the new allocation
data.copy(sb, 0, 0, 10);
store.push(sb);
});
Use of SlowBuffer should be used only as a last resort after a developer
has observed undue memory retention in their applications.
new SlowBuffer(size)
Stability: 0 - Deprecated: Use [`Buffer.allocUnsafeSlow()`] instead.
sizeNumber
Allocates a new SlowBuffer of size bytes. The size must be less than
or equal to the value of require('buffer').kMaxLength (on 64-bit
architectures, kMaxLength is (2^31)-1). Otherwise, a RangeError is
thrown. A zero-length Buffer will be created if a size less than or equal to
0 is specified.
The underlying memory for SlowBuffer instances is not initialized. The
contents of a newly created SlowBuffer are unknown and could contain
sensitive data. Use buf.fill(0) to initialize a SlowBuffer to zeroes.
const SlowBuffer = require('buffer').SlowBuffer;
const buf = new SlowBuffer(5);
// Prints (contents may vary): <Buffer 78 e0 82 02 01>
console.log(buf);
buf.fill(0);
// Prints: <Buffer 00 00 00 00 00>
console.log(buf);