Files
node/src/string_bytes.cc
Mohammed Keyvanzadeh dd6eb67b1f src: prefer data accessor of string and vector
The pattern of getting the address of the element at index 0 of a
container is generally used to materialize a pointer to the backing
data of a container, however `std::string` and `std::vector`
provide a `data()` accessor to retrieve the data pointer which
should be preferred.

This also ensures that in the case that the container is empty, the
data pointer access does not perform an errant memory access.

PR-URL: https://github.com/nodejs/node/pull/47750
Reviewed-By: Tobias Nießen <tniessen@tnie.de>
Reviewed-By: Daeyeon Jeong <daeyeon.dev@gmail.com>
Reviewed-By: Chengzhong Wu <legendecas@gmail.com>
Reviewed-By: Darshan Sen <raisinten@gmail.com>
Reviewed-By: Matteo Collina <matteo.collina@gmail.com>
2023-05-03 14:09:23 +00:00

725 lines
23 KiB
C++

// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "string_bytes.h"
#include "base64-inl.h"
#include "env-inl.h"
#include "node_buffer.h"
#include "node_errors.h"
#include "simdutf.h"
#include "util.h"
#include <climits>
#include <cstring> // memcpy
#include <algorithm>
// When creating strings >= this length v8's gc spins up and consumes
// most of the execution time. For these cases it's more performant to
// use external string resources.
#define EXTERN_APEX 0xFBEE9
namespace node {
using v8::HandleScope;
using v8::Isolate;
using v8::Just;
using v8::Local;
using v8::Maybe;
using v8::MaybeLocal;
using v8::Nothing;
using v8::String;
using v8::Value;
namespace {
template <typename ResourceType, typename TypeName>
class ExternString: public ResourceType {
public:
~ExternString() override {
free(const_cast<TypeName*>(data_));
isolate()->AdjustAmountOfExternalAllocatedMemory(-byte_length());
}
const TypeName* data() const override {
return data_;
}
size_t length() const override {
return length_;
}
int64_t byte_length() const {
return length() * sizeof(*data());
}
static MaybeLocal<Value> NewFromCopy(Isolate* isolate,
const TypeName* data,
size_t length,
Local<Value>* error) {
if (length == 0)
return String::Empty(isolate);
if (length < EXTERN_APEX)
return NewSimpleFromCopy(isolate, data, length, error);
TypeName* new_data = node::UncheckedMalloc<TypeName>(length);
if (new_data == nullptr) {
*error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate);
return MaybeLocal<Value>();
}
memcpy(new_data, data, length * sizeof(*new_data));
return ExternString<ResourceType, TypeName>::New(isolate,
new_data,
length,
error);
}
// uses "data" for external resource, and will be free'd on gc
static MaybeLocal<Value> New(Isolate* isolate,
TypeName* data,
size_t length,
Local<Value>* error) {
if (length == 0)
return String::Empty(isolate);
if (length < EXTERN_APEX) {
MaybeLocal<Value> str = NewSimpleFromCopy(isolate, data, length, error);
free(data);
return str;
}
ExternString* h_str = new ExternString<ResourceType, TypeName>(isolate,
data,
length);
MaybeLocal<Value> str = NewExternal(isolate, h_str);
isolate->AdjustAmountOfExternalAllocatedMemory(h_str->byte_length());
if (str.IsEmpty()) {
delete h_str;
*error = node::ERR_STRING_TOO_LONG(isolate);
return MaybeLocal<Value>();
}
return str.ToLocalChecked();
}
inline Isolate* isolate() const { return isolate_; }
private:
ExternString(Isolate* isolate, const TypeName* data, size_t length)
: isolate_(isolate), data_(data), length_(length) { }
static MaybeLocal<Value> NewExternal(Isolate* isolate,
ExternString* h_str);
// This method does not actually create ExternString instances.
static MaybeLocal<Value> NewSimpleFromCopy(Isolate* isolate,
const TypeName* data,
size_t length,
Local<Value>* error);
Isolate* isolate_;
const TypeName* data_;
size_t length_;
};
typedef ExternString<String::ExternalOneByteStringResource,
char> ExternOneByteString;
typedef ExternString<String::ExternalStringResource,
uint16_t> ExternTwoByteString;
template <>
MaybeLocal<Value> ExternOneByteString::NewExternal(
Isolate* isolate, ExternOneByteString* h_str) {
return String::NewExternalOneByte(isolate, h_str).FromMaybe(Local<Value>());
}
template <>
MaybeLocal<Value> ExternTwoByteString::NewExternal(
Isolate* isolate, ExternTwoByteString* h_str) {
return String::NewExternalTwoByte(isolate, h_str).FromMaybe(Local<Value>());
}
template <>
MaybeLocal<Value> ExternOneByteString::NewSimpleFromCopy(Isolate* isolate,
const char* data,
size_t length,
Local<Value>* error) {
MaybeLocal<String> str =
String::NewFromOneByte(isolate,
reinterpret_cast<const uint8_t*>(data),
v8::NewStringType::kNormal,
length);
if (str.IsEmpty()) {
*error = node::ERR_STRING_TOO_LONG(isolate);
return MaybeLocal<Value>();
}
return str.ToLocalChecked();
}
template <>
MaybeLocal<Value> ExternTwoByteString::NewSimpleFromCopy(Isolate* isolate,
const uint16_t* data,
size_t length,
Local<Value>* error) {
MaybeLocal<String> str =
String::NewFromTwoByte(isolate,
data,
v8::NewStringType::kNormal,
length);
if (str.IsEmpty()) {
*error = node::ERR_STRING_TOO_LONG(isolate);
return MaybeLocal<Value>();
}
return str.ToLocalChecked();
}
} // anonymous namespace
// supports regular and URL-safe base64
const int8_t unbase64_table[256] =
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -1, -1, -2, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, 62, -1, 63,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -1, -1, -1,
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63,
-1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
static const int8_t unhex_table[256] =
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
static inline unsigned unhex(uint8_t x) {
return unhex_table[x];
}
template <typename TypeName>
static size_t hex_decode(char* buf,
size_t len,
const TypeName* src,
const size_t srcLen) {
size_t i;
for (i = 0; i < len && i * 2 + 1 < srcLen; ++i) {
unsigned a = unhex(static_cast<uint8_t>(src[i * 2 + 0]));
unsigned b = unhex(static_cast<uint8_t>(src[i * 2 + 1]));
if (!~a || !~b)
return i;
buf[i] = (a << 4) | b;
}
return i;
}
size_t StringBytes::WriteUCS2(
Isolate* isolate, char* buf, size_t buflen, Local<String> str, int flags) {
uint16_t* const dst = reinterpret_cast<uint16_t*>(buf);
size_t max_chars = buflen / sizeof(*dst);
if (max_chars == 0) {
return 0;
}
uint16_t* const aligned_dst = AlignUp(dst, sizeof(*dst));
size_t nchars;
if (aligned_dst == dst) {
nchars = str->Write(isolate, dst, 0, max_chars, flags);
return nchars * sizeof(*dst);
}
CHECK_EQ(reinterpret_cast<uintptr_t>(aligned_dst) % sizeof(*dst), 0);
// Write all but the last char
max_chars = std::min(max_chars, static_cast<size_t>(str->Length()));
if (max_chars == 0) {
return 0;
}
nchars = str->Write(isolate, aligned_dst, 0, max_chars - 1, flags);
CHECK_EQ(nchars, max_chars - 1);
// Shift everything to unaligned-left
memmove(dst, aligned_dst, nchars * sizeof(*dst));
// One more char to be written
uint16_t last;
CHECK_EQ(str->Write(isolate, &last, nchars, 1, flags), 1);
memcpy(buf + nchars * sizeof(*dst), &last, sizeof(last));
nchars++;
return nchars * sizeof(*dst);
}
size_t StringBytes::Write(Isolate* isolate,
char* buf,
size_t buflen,
Local<Value> val,
enum encoding encoding) {
HandleScope scope(isolate);
size_t nbytes;
CHECK(val->IsString() == true);
Local<String> str = val.As<String>();
int flags = String::HINT_MANY_WRITES_EXPECTED |
String::NO_NULL_TERMINATION |
String::REPLACE_INVALID_UTF8;
switch (encoding) {
case ASCII:
case LATIN1:
if (str->IsExternalOneByte()) {
auto ext = str->GetExternalOneByteStringResource();
nbytes = std::min(buflen, ext->length());
memcpy(buf, ext->data(), nbytes);
} else {
uint8_t* const dst = reinterpret_cast<uint8_t*>(buf);
nbytes = str->WriteOneByte(isolate, dst, 0, buflen, flags);
}
break;
case BUFFER:
case UTF8:
nbytes = str->WriteUtf8(isolate, buf, buflen, nullptr, flags);
break;
case UCS2: {
nbytes = WriteUCS2(isolate, buf, buflen, str, flags);
// Node's "ucs2" encoding wants LE character data stored in
// the Buffer, so we need to reorder on BE platforms. See
// https://nodejs.org/api/buffer.html regarding Node's "ucs2"
// encoding specification
if (IsBigEndian())
SwapBytes16(buf, nbytes);
break;
}
case BASE64URL:
// Fall through
case BASE64:
if (str->IsExternalOneByte()) {
auto ext = str->GetExternalOneByteStringResource();
nbytes = base64_decode(buf, buflen, ext->data(), ext->length());
} else {
String::Value value(isolate, str);
nbytes = base64_decode(buf, buflen, *value, value.length());
}
break;
case HEX:
if (str->IsExternalOneByte()) {
auto ext = str->GetExternalOneByteStringResource();
nbytes = hex_decode(buf, buflen, ext->data(), ext->length());
} else {
String::Value value(isolate, str);
nbytes = hex_decode(buf, buflen, *value, value.length());
}
break;
default:
UNREACHABLE("unknown encoding");
}
return nbytes;
}
// Quick and dirty size calculation
// Will always be at least big enough, but may have some extra
// UTF8 can be as much as 3x the size, Base64 can have 1-2 extra bytes
Maybe<size_t> StringBytes::StorageSize(Isolate* isolate,
Local<Value> val,
enum encoding encoding) {
HandleScope scope(isolate);
size_t data_size = 0;
bool is_buffer = Buffer::HasInstance(val);
if (is_buffer && (encoding == BUFFER || encoding == LATIN1)) {
return Just(Buffer::Length(val));
}
Local<String> str;
if (!val->ToString(isolate->GetCurrentContext()).ToLocal(&str))
return Nothing<size_t>();
switch (encoding) {
case ASCII:
case LATIN1:
data_size = str->Length();
break;
case BUFFER:
case UTF8:
// A single UCS2 codepoint never takes up more than 3 utf8 bytes.
// It is an exercise for the caller to decide when a string is
// long enough to justify calling Size() instead of StorageSize()
data_size = 3 * str->Length();
break;
case UCS2:
data_size = str->Length() * sizeof(uint16_t);
break;
case BASE64URL:
// Fall through
case BASE64:
data_size = base64_decoded_size_fast(str->Length());
break;
case HEX:
CHECK(str->Length() % 2 == 0 && "invalid hex string length");
data_size = str->Length() / 2;
break;
default:
UNREACHABLE("unknown encoding");
}
return Just(data_size);
}
Maybe<size_t> StringBytes::Size(Isolate* isolate,
Local<Value> val,
enum encoding encoding) {
HandleScope scope(isolate);
if (Buffer::HasInstance(val) && (encoding == BUFFER || encoding == LATIN1))
return Just(Buffer::Length(val));
Local<String> str;
if (!val->ToString(isolate->GetCurrentContext()).ToLocal(&str))
return Nothing<size_t>();
switch (encoding) {
case ASCII:
case LATIN1:
return Just<size_t>(str->Length());
case BUFFER:
case UTF8:
return Just<size_t>(str->Utf8Length(isolate));
case UCS2:
return Just(str->Length() * sizeof(uint16_t));
case BASE64URL:
// Fall through
case BASE64: {
String::Value value(isolate, str);
return Just(base64_decoded_size(*value, value.length()));
}
case HEX:
return Just<size_t>(str->Length() / 2);
}
UNREACHABLE();
}
static void force_ascii_slow(const char* src, char* dst, size_t len) {
for (size_t i = 0; i < len; ++i) {
dst[i] = src[i] & 0x7f;
}
}
static void force_ascii(const char* src, char* dst, size_t len) {
if (len < 16) {
force_ascii_slow(src, dst, len);
return;
}
const unsigned bytes_per_word = sizeof(uintptr_t);
const unsigned align_mask = bytes_per_word - 1;
const unsigned src_unalign = reinterpret_cast<uintptr_t>(src) & align_mask;
const unsigned dst_unalign = reinterpret_cast<uintptr_t>(dst) & align_mask;
if (src_unalign > 0) {
if (src_unalign == dst_unalign) {
const unsigned unalign = bytes_per_word - src_unalign;
force_ascii_slow(src, dst, unalign);
src += unalign;
dst += unalign;
len -= src_unalign;
} else {
force_ascii_slow(src, dst, len);
return;
}
}
#if defined(_WIN64) || defined(_LP64)
const uintptr_t mask = ~0x8080808080808080ll;
#else
const uintptr_t mask = ~0x80808080l;
#endif
const uintptr_t* srcw = reinterpret_cast<const uintptr_t*>(src);
uintptr_t* dstw = reinterpret_cast<uintptr_t*>(dst);
for (size_t i = 0, n = len / bytes_per_word; i < n; ++i) {
dstw[i] = srcw[i] & mask;
}
const unsigned remainder = len & align_mask;
if (remainder > 0) {
const size_t offset = len - remainder;
force_ascii_slow(src + offset, dst + offset, remainder);
}
}
size_t StringBytes::hex_encode(
const char* src,
size_t slen,
char* dst,
size_t dlen) {
// We know how much we'll write, just make sure that there's space.
CHECK(dlen >= slen * 2 &&
"not enough space provided for hex encode");
dlen = slen * 2;
for (uint32_t i = 0, k = 0; k < dlen; i += 1, k += 2) {
static const char hex[] = "0123456789abcdef";
uint8_t val = static_cast<uint8_t>(src[i]);
dst[k + 0] = hex[val >> 4];
dst[k + 1] = hex[val & 15];
}
return dlen;
}
std::string StringBytes::hex_encode(const char* src, size_t slen) {
size_t dlen = slen * 2;
std::string dst(dlen, '\0');
hex_encode(src, slen, dst.data(), dlen);
return dst;
}
#define CHECK_BUFLEN_IN_RANGE(len) \
do { \
if ((len) > Buffer::kMaxLength) { \
*error = node::ERR_BUFFER_TOO_LARGE(isolate); \
return MaybeLocal<Value>(); \
} \
} while (0)
MaybeLocal<Value> StringBytes::Encode(Isolate* isolate,
const char* buf,
size_t buflen,
enum encoding encoding,
Local<Value>* error) {
CHECK_BUFLEN_IN_RANGE(buflen);
if (!buflen && encoding != BUFFER) {
return String::Empty(isolate);
}
MaybeLocal<String> val;
switch (encoding) {
case BUFFER:
{
auto maybe_buf = Buffer::Copy(isolate, buf, buflen);
Local<v8::Object> buf;
if (!maybe_buf.ToLocal(&buf)) {
*error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate);
}
return buf;
}
case ASCII:
if (simdutf::validate_ascii_with_errors(buf, buflen).error) {
// The input contains non-ASCII bytes.
char* out = node::UncheckedMalloc(buflen);
if (out == nullptr) {
*error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate);
return MaybeLocal<Value>();
}
force_ascii(buf, out, buflen);
return ExternOneByteString::New(isolate, out, buflen, error);
} else {
return ExternOneByteString::NewFromCopy(isolate, buf, buflen, error);
}
case UTF8:
{
val = String::NewFromUtf8(isolate,
buf,
v8::NewStringType::kNormal,
buflen);
Local<String> str;
if (!val.ToLocal(&str)) {
*error = node::ERR_STRING_TOO_LONG(isolate);
}
return str;
}
case LATIN1:
return ExternOneByteString::NewFromCopy(isolate, buf, buflen, error);
case BASE64: {
size_t dlen = base64_encoded_size(buflen);
char* dst = node::UncheckedMalloc(dlen);
if (dst == nullptr) {
*error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate);
return MaybeLocal<Value>();
}
size_t written = base64_encode(buf, buflen, dst, dlen);
CHECK_EQ(written, dlen);
return ExternOneByteString::New(isolate, dst, dlen, error);
}
case BASE64URL: {
size_t dlen = base64_encoded_size(buflen, Base64Mode::URL);
char* dst = node::UncheckedMalloc(dlen);
if (dst == nullptr) {
*error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate);
return MaybeLocal<Value>();
}
size_t written = base64_encode(buf, buflen, dst, dlen, Base64Mode::URL);
CHECK_EQ(written, dlen);
return ExternOneByteString::New(isolate, dst, dlen, error);
}
case HEX: {
size_t dlen = buflen * 2;
char* dst = node::UncheckedMalloc(dlen);
if (dst == nullptr) {
*error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate);
return MaybeLocal<Value>();
}
size_t written = hex_encode(buf, buflen, dst, dlen);
CHECK_EQ(written, dlen);
return ExternOneByteString::New(isolate, dst, dlen, error);
}
case UCS2: {
size_t str_len = buflen / 2;
if (IsBigEndian()) {
uint16_t* dst = node::UncheckedMalloc<uint16_t>(str_len);
if (str_len != 0 && dst == nullptr) {
*error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate);
return MaybeLocal<Value>();
}
for (size_t i = 0, k = 0; k < str_len; i += 2, k += 1) {
// The input is in *little endian*, because that's what Node.js
// expects, so the high byte comes after the low byte.
const uint8_t hi = static_cast<uint8_t>(buf[i + 1]);
const uint8_t lo = static_cast<uint8_t>(buf[i + 0]);
dst[k] = static_cast<uint16_t>(hi) << 8 | lo;
}
return ExternTwoByteString::New(isolate, dst, str_len, error);
}
if (reinterpret_cast<uintptr_t>(buf) % 2 != 0) {
// Unaligned data still means we can't directly pass it to V8.
char* dst = node::UncheckedMalloc(buflen);
if (dst == nullptr) {
*error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate);
return MaybeLocal<Value>();
}
memcpy(dst, buf, buflen);
return ExternTwoByteString::New(
isolate, reinterpret_cast<uint16_t*>(dst), str_len, error);
}
return ExternTwoByteString::NewFromCopy(
isolate, reinterpret_cast<const uint16_t*>(buf), str_len, error);
}
default:
UNREACHABLE("unknown encoding");
}
}
MaybeLocal<Value> StringBytes::Encode(Isolate* isolate,
const uint16_t* buf,
size_t buflen,
Local<Value>* error) {
if (buflen == 0) return String::Empty(isolate);
CHECK_BUFLEN_IN_RANGE(buflen);
// Node's "ucs2" encoding expects LE character data inside a
// Buffer, so we need to reorder on BE platforms. See
// https://nodejs.org/api/buffer.html regarding Node's "ucs2"
// encoding specification
if (IsBigEndian()) {
uint16_t* dst = node::UncheckedMalloc<uint16_t>(buflen);
if (dst == nullptr) {
*error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate);
return MaybeLocal<Value>();
}
size_t nbytes = buflen * sizeof(uint16_t);
memcpy(dst, buf, nbytes);
SwapBytes16(reinterpret_cast<char*>(dst), nbytes);
return ExternTwoByteString::New(isolate, dst, buflen, error);
} else {
return ExternTwoByteString::NewFromCopy(isolate, buf, buflen, error);
}
}
MaybeLocal<Value> StringBytes::Encode(Isolate* isolate,
const char* buf,
enum encoding encoding,
Local<Value>* error) {
const size_t len = strlen(buf);
return Encode(isolate, buf, len, encoding, error);
}
} // namespace node