Files
node/src/node_buffer.cc
Ben Noordhuis 2d82cdf670 src: replace NULL with nullptr
Now that we are building with C++11 features enabled, replace use
of NULL with nullptr.

The benefit of using nullptr is that it can never be confused for
an integral type because it does not support implicit conversions
to integral types except boolean - unlike NULL, which is defined
as a literal `0`.
2014-10-23 22:49:58 +02:00

658 lines
19 KiB
C++

// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "node.h"
#include "node_buffer.h"
#include "env.h"
#include "env-inl.h"
#include "smalloc.h"
#include "string_bytes.h"
#include "v8-profiler.h"
#include "v8.h"
#include <string.h>
#include <limits.h>
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define CHECK_NOT_OOB(r) \
do { \
if (!(r)) return env->ThrowRangeError("out of range index"); \
} while (0)
#define ARGS_THIS(argT) \
Local<Object> obj = argT; \
size_t obj_length = obj->GetIndexedPropertiesExternalArrayDataLength(); \
char* obj_data = static_cast<char*>( \
obj->GetIndexedPropertiesExternalArrayData()); \
if (obj_length > 0) \
CHECK_NE(obj_data, nullptr);
#define SLICE_START_END(start_arg, end_arg, end_max) \
size_t start; \
size_t end; \
CHECK_NOT_OOB(ParseArrayIndex(start_arg, 0, &start)); \
CHECK_NOT_OOB(ParseArrayIndex(end_arg, end_max, &end)); \
if (end < start) end = start; \
CHECK_NOT_OOB(end <= end_max); \
size_t length = end - start;
namespace node {
namespace Buffer {
using v8::Context;
using v8::EscapableHandleScope;
using v8::Function;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::Handle;
using v8::HandleScope;
using v8::Isolate;
using v8::Local;
using v8::Number;
using v8::Object;
using v8::String;
using v8::Uint32;
using v8::Value;
bool HasInstance(Handle<Value> val) {
return val->IsObject() && HasInstance(val.As<Object>());
}
bool HasInstance(Handle<Object> obj) {
if (!obj->HasIndexedPropertiesInExternalArrayData())
return false;
v8::ExternalArrayType type = obj->GetIndexedPropertiesExternalArrayDataType();
return type == v8::kExternalUint8Array;
}
char* Data(Handle<Value> val) {
CHECK(val->IsObject());
// Use a fully qualified name here to work around a bug in gcc 4.2.
// It mistakes an unadorned call to Data() for the v8::String::Data type.
return node::Buffer::Data(val.As<Object>());
}
char* Data(Handle<Object> obj) {
CHECK(obj->HasIndexedPropertiesInExternalArrayData());
return static_cast<char*>(obj->GetIndexedPropertiesExternalArrayData());
}
size_t Length(Handle<Value> val) {
CHECK(val->IsObject());
return Length(val.As<Object>());
}
size_t Length(Handle<Object> obj) {
CHECK(obj->HasIndexedPropertiesInExternalArrayData());
return obj->GetIndexedPropertiesExternalArrayDataLength();
}
Local<Object> New(Isolate* isolate, Handle<String> string, enum encoding enc) {
EscapableHandleScope scope(isolate);
size_t length = StringBytes::Size(isolate, string, enc);
Local<Object> buf = New(length);
char* data = Buffer::Data(buf);
StringBytes::Write(isolate, data, length, string, enc);
return scope.Escape(buf);
}
Local<Object> New(Isolate* isolate, size_t length) {
EscapableHandleScope handle_scope(isolate);
Local<Object> obj = Buffer::New(Environment::GetCurrent(isolate), length);
return handle_scope.Escape(obj);
}
// TODO(trevnorris): these have a flaw by needing to call the Buffer inst then
// Alloc. continue to look for a better architecture.
Local<Object> New(Environment* env, size_t length) {
EscapableHandleScope scope(env->isolate());
CHECK_LE(length, kMaxLength);
Local<Value> arg = Uint32::NewFromUnsigned(env->isolate(), length);
Local<Object> obj = env->buffer_constructor_function()->NewInstance(1, &arg);
// TODO(trevnorris): done like this to handle HasInstance since only checks
// if external array data has been set, but would like to use a better
// approach if v8 provided one.
char* data;
if (length > 0) {
data = static_cast<char*>(malloc(length));
if (data == nullptr)
FatalError("node::Buffer::New(size_t)", "Out Of Memory");
} else {
data = nullptr;
}
smalloc::Alloc(env, obj, data, length);
return scope.Escape(obj);
}
Local<Object> New(Isolate* isolate, const char* data, size_t length) {
Environment* env = Environment::GetCurrent(isolate);
EscapableHandleScope handle_scope(env->isolate());
Local<Object> obj = Buffer::New(env, data, length);
return handle_scope.Escape(obj);
}
// TODO(trevnorris): for backwards compatibility this is left to copy the data,
// but for consistency w/ the other should use data. And a copy version renamed
// to something else.
Local<Object> New(Environment* env, const char* data, size_t length) {
EscapableHandleScope scope(env->isolate());
CHECK_LE(length, kMaxLength);
Local<Value> arg = Uint32::NewFromUnsigned(env->isolate(), length);
Local<Object> obj = env->buffer_constructor_function()->NewInstance(1, &arg);
// TODO(trevnorris): done like this to handle HasInstance since only checks
// if external array data has been set, but would like to use a better
// approach if v8 provided one.
char* new_data;
if (length > 0) {
new_data = static_cast<char*>(malloc(length));
if (new_data == nullptr)
FatalError("node::Buffer::New(const char*, size_t)", "Out Of Memory");
memcpy(new_data, data, length);
} else {
new_data = nullptr;
}
smalloc::Alloc(env, obj, new_data, length);
return scope.Escape(obj);
}
Local<Object> New(Isolate* isolate,
char* data,
size_t length,
smalloc::FreeCallback callback,
void* hint) {
Environment* env = Environment::GetCurrent(isolate);
EscapableHandleScope handle_scope(env->isolate());
Local<Object> obj = Buffer::New(env, data, length, callback, hint);
return handle_scope.Escape(obj);
}
Local<Object> New(Environment* env,
char* data,
size_t length,
smalloc::FreeCallback callback,
void* hint) {
EscapableHandleScope scope(env->isolate());
CHECK_LE(length, kMaxLength);
Local<Value> arg = Uint32::NewFromUnsigned(env->isolate(), length);
Local<Object> obj = env->buffer_constructor_function()->NewInstance(1, &arg);
smalloc::Alloc(env, obj, data, length, callback, hint);
return scope.Escape(obj);
}
Local<Object> Use(Isolate* isolate, char* data, uint32_t length) {
Environment* env = Environment::GetCurrent(isolate);
EscapableHandleScope handle_scope(env->isolate());
Local<Object> obj = Buffer::Use(env, data, length);
return handle_scope.Escape(obj);
}
Local<Object> Use(Environment* env, char* data, uint32_t length) {
EscapableHandleScope scope(env->isolate());
CHECK_LE(length, kMaxLength);
Local<Value> arg = Uint32::NewFromUnsigned(env->isolate(), length);
Local<Object> obj = env->buffer_constructor_function()->NewInstance(1, &arg);
smalloc::Alloc(env, obj, data, length);
return scope.Escape(obj);
}
template <encoding encoding>
void StringSlice(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
ARGS_THIS(args.This())
SLICE_START_END(args[0], args[1], obj_length)
args.GetReturnValue().Set(
StringBytes::Encode(env->isolate(), obj_data + start, length, encoding));
}
void BinarySlice(const FunctionCallbackInfo<Value>& args) {
StringSlice<BINARY>(args);
}
void AsciiSlice(const FunctionCallbackInfo<Value>& args) {
StringSlice<ASCII>(args);
}
void Utf8Slice(const FunctionCallbackInfo<Value>& args) {
StringSlice<UTF8>(args);
}
void Ucs2Slice(const FunctionCallbackInfo<Value>& args) {
StringSlice<UCS2>(args);
}
void HexSlice(const FunctionCallbackInfo<Value>& args) {
StringSlice<HEX>(args);
}
void Base64Slice(const FunctionCallbackInfo<Value>& args) {
StringSlice<BASE64>(args);
}
// bytesCopied = buffer.copy(target[, targetStart][, sourceStart][, sourceEnd]);
void Copy(const FunctionCallbackInfo<Value> &args) {
Environment* env = Environment::GetCurrent(args);
Local<Object> target = args[0]->ToObject();
if (!HasInstance(target))
return env->ThrowTypeError("first arg should be a Buffer");
ARGS_THIS(args.This())
size_t target_length = target->GetIndexedPropertiesExternalArrayDataLength();
char* target_data = static_cast<char*>(
target->GetIndexedPropertiesExternalArrayData());
size_t target_start;
size_t source_start;
size_t source_end;
CHECK_NOT_OOB(ParseArrayIndex(args[1], 0, &target_start));
CHECK_NOT_OOB(ParseArrayIndex(args[2], 0, &source_start));
CHECK_NOT_OOB(ParseArrayIndex(args[3], obj_length, &source_end));
// Copy 0 bytes; we're done
if (target_start >= target_length || source_start >= source_end)
return args.GetReturnValue().Set(0);
if (source_start > obj_length)
return env->ThrowRangeError("out of range index");
if (source_end - source_start > target_length - target_start)
source_end = source_start + target_length - target_start;
uint32_t to_copy = MIN(MIN(source_end - source_start,
target_length - target_start),
obj_length - source_start);
memmove(target_data + target_start, obj_data + source_start, to_copy);
args.GetReturnValue().Set(to_copy);
}
void Fill(const FunctionCallbackInfo<Value>& args) {
ARGS_THIS(args[0].As<Object>())
size_t start = args[2]->Uint32Value();
size_t end = args[3]->Uint32Value();
size_t length = end - start;
CHECK(length + start <= obj_length);
if (args[1]->IsNumber()) {
int value = args[1]->Uint32Value() & 255;
memset(obj_data + start, value, length);
return;
}
node::Utf8Value str(args[1]);
size_t str_length = str.length();
size_t in_there = str_length;
char* ptr = obj_data + start + str_length;
if (str_length == 0)
return;
memcpy(obj_data + start, *str, MIN(str_length, length));
if (str_length >= length)
return;
while (in_there < length - in_there) {
memcpy(ptr, obj_data + start, in_there);
ptr += in_there;
in_there *= 2;
}
if (in_there < length) {
memcpy(ptr, obj_data + start, length - in_there);
in_there = length;
}
}
template <encoding encoding>
void StringWrite(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
ARGS_THIS(args.This())
if (!args[0]->IsString())
return env->ThrowTypeError("Argument must be a string");
Local<String> str = args[0]->ToString();
if (encoding == HEX && str->Length() % 2 != 0)
return env->ThrowTypeError("Invalid hex string");
size_t offset;
size_t max_length;
CHECK_NOT_OOB(ParseArrayIndex(args[1], 0, &offset));
CHECK_NOT_OOB(ParseArrayIndex(args[2], obj_length - offset, &max_length));
max_length = MIN(obj_length - offset, max_length);
if (max_length == 0)
return args.GetReturnValue().Set(0);
if (encoding == UCS2)
max_length = max_length / 2;
if (offset >= obj_length)
return env->ThrowRangeError("Offset is out of bounds");
uint32_t written = StringBytes::Write(env->isolate(),
obj_data + offset,
max_length,
str,
encoding,
nullptr);
args.GetReturnValue().Set(written);
}
void Base64Write(const FunctionCallbackInfo<Value>& args) {
StringWrite<BASE64>(args);
}
void BinaryWrite(const FunctionCallbackInfo<Value>& args) {
StringWrite<BINARY>(args);
}
void Utf8Write(const FunctionCallbackInfo<Value>& args) {
StringWrite<UTF8>(args);
}
void Ucs2Write(const FunctionCallbackInfo<Value>& args) {
StringWrite<UCS2>(args);
}
void HexWrite(const FunctionCallbackInfo<Value>& args) {
StringWrite<HEX>(args);
}
void AsciiWrite(const FunctionCallbackInfo<Value>& args) {
StringWrite<ASCII>(args);
}
static inline void Swizzle(char* start, unsigned int len) {
char* end = start + len - 1;
while (start < end) {
char tmp = *start;
*start++ = *end;
*end-- = tmp;
}
}
template <typename T, enum Endianness endianness>
void ReadFloatGeneric(const FunctionCallbackInfo<Value>& args) {
ARGS_THIS(args[0].As<Object>());
uint32_t offset = args[1]->Uint32Value();
CHECK_LE(offset + sizeof(T), obj_length);
union NoAlias {
T val;
char bytes[sizeof(T)];
};
union NoAlias na;
const char* ptr = static_cast<const char*>(obj_data) + offset;
memcpy(na.bytes, ptr, sizeof(na.bytes));
if (endianness != GetEndianness())
Swizzle(na.bytes, sizeof(na.bytes));
args.GetReturnValue().Set(na.val);
}
void ReadFloatLE(const FunctionCallbackInfo<Value>& args) {
ReadFloatGeneric<float, kLittleEndian>(args);
}
void ReadFloatBE(const FunctionCallbackInfo<Value>& args) {
ReadFloatGeneric<float, kBigEndian>(args);
}
void ReadDoubleLE(const FunctionCallbackInfo<Value>& args) {
ReadFloatGeneric<double, kLittleEndian>(args);
}
void ReadDoubleBE(const FunctionCallbackInfo<Value>& args) {
ReadFloatGeneric<double, kBigEndian>(args);
}
template <typename T, enum Endianness endianness>
uint32_t WriteFloatGeneric(const FunctionCallbackInfo<Value>& args) {
ARGS_THIS(args[0].As<Object>())
T val = args[1]->NumberValue();
uint32_t offset = args[2]->Uint32Value();
CHECK_LE(offset + sizeof(T), obj_length);
union NoAlias {
T val;
char bytes[sizeof(T)];
};
union NoAlias na = { val };
char* ptr = static_cast<char*>(obj_data) + offset;
if (endianness != GetEndianness())
Swizzle(na.bytes, sizeof(na.bytes));
memcpy(ptr, na.bytes, sizeof(na.bytes));
return offset + sizeof(na.bytes);
}
void WriteFloatLE(const FunctionCallbackInfo<Value>& args) {
args.GetReturnValue().Set(WriteFloatGeneric<float, kLittleEndian>(args));
}
void WriteFloatBE(const FunctionCallbackInfo<Value>& args) {
args.GetReturnValue().Set(WriteFloatGeneric<float, kBigEndian>(args));
}
void WriteDoubleLE(const FunctionCallbackInfo<Value>& args) {
args.GetReturnValue().Set(WriteFloatGeneric<double, kLittleEndian>(args));
}
void WriteDoubleBE(const FunctionCallbackInfo<Value>& args) {
args.GetReturnValue().Set(WriteFloatGeneric<double, kBigEndian>(args));
}
void ByteLength(const FunctionCallbackInfo<Value> &args) {
Environment* env = Environment::GetCurrent(args);
if (!args[0]->IsString())
return env->ThrowTypeError("Argument must be a string");
Local<String> s = args[0]->ToString();
enum encoding e = ParseEncoding(env->isolate(), args[1], UTF8);
uint32_t size = StringBytes::Size(env->isolate(), s, e);
args.GetReturnValue().Set(size);
}
void Compare(const FunctionCallbackInfo<Value> &args) {
Local<Object> obj_a = args[0].As<Object>();
char* obj_a_data =
static_cast<char*>(obj_a->GetIndexedPropertiesExternalArrayData());
size_t obj_a_len = obj_a->GetIndexedPropertiesExternalArrayDataLength();
Local<Object> obj_b = args[1].As<Object>();
char* obj_b_data =
static_cast<char*>(obj_b->GetIndexedPropertiesExternalArrayData());
size_t obj_b_len = obj_b->GetIndexedPropertiesExternalArrayDataLength();
size_t cmp_length = MIN(obj_a_len, obj_b_len);
int32_t val = memcmp(obj_a_data, obj_b_data, cmp_length);
// Normalize val to be an integer in the range of [1, -1] since
// implementations of memcmp() can vary by platform.
if (val == 0) {
if (obj_a_len > obj_b_len)
val = 1;
else if (obj_a_len < obj_b_len)
val = -1;
} else {
if (val > 0)
val = 1;
else
val = -1;
}
args.GetReturnValue().Set(val);
}
// pass Buffer object to load prototype methods
void SetupBufferJS(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CHECK(args[0]->IsFunction());
Local<Function> bv = args[0].As<Function>();
env->set_buffer_constructor_function(bv);
Local<Value> proto_v = bv->Get(env->prototype_string());
CHECK(proto_v->IsObject());
Local<Object> proto = proto_v.As<Object>();
env->SetMethod(proto, "asciiSlice", AsciiSlice);
env->SetMethod(proto, "base64Slice", Base64Slice);
env->SetMethod(proto, "binarySlice", BinarySlice);
env->SetMethod(proto, "hexSlice", HexSlice);
env->SetMethod(proto, "ucs2Slice", Ucs2Slice);
env->SetMethod(proto, "utf8Slice", Utf8Slice);
env->SetMethod(proto, "asciiWrite", AsciiWrite);
env->SetMethod(proto, "base64Write", Base64Write);
env->SetMethod(proto, "binaryWrite", BinaryWrite);
env->SetMethod(proto, "hexWrite", HexWrite);
env->SetMethod(proto, "ucs2Write", Ucs2Write);
env->SetMethod(proto, "utf8Write", Utf8Write);
env->SetMethod(proto, "copy", Copy);
// for backwards compatibility
proto->ForceSet(env->offset_string(),
Uint32::New(env->isolate(), 0),
v8::ReadOnly);
CHECK(args[1]->IsObject());
Local<Object> internal = args[1].As<Object>();
ASSERT(internal->IsObject());
env->SetMethod(internal, "byteLength", ByteLength);
env->SetMethod(internal, "compare", Compare);
env->SetMethod(internal, "fill", Fill);
env->SetMethod(internal, "readDoubleBE", ReadDoubleBE);
env->SetMethod(internal, "readDoubleLE", ReadDoubleLE);
env->SetMethod(internal, "readFloatBE", ReadFloatBE);
env->SetMethod(internal, "readFloatLE", ReadFloatLE);
env->SetMethod(internal, "writeDoubleBE", WriteDoubleBE);
env->SetMethod(internal, "writeDoubleLE", WriteDoubleLE);
env->SetMethod(internal, "writeFloatBE", WriteFloatBE);
env->SetMethod(internal, "writeFloatLE", WriteFloatLE);
}
void Initialize(Handle<Object> target,
Handle<Value> unused,
Handle<Context> context) {
Environment* env = Environment::GetCurrent(context);
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "setupBufferJS"),
env->NewFunctionTemplate(SetupBufferJS)->GetFunction());
}
} // namespace Buffer
} // namespace node
NODE_MODULE_CONTEXT_AWARE_BUILTIN(buffer, node::Buffer::Initialize)