Files
node/src/node_process_methods.cc
Michaël Zasso 5623194a6b doc,src,test: replace use of deprecated GetIsolate
`Isolate::GetCurrent()` should be used instead as it returns the same
thing.

Refs: 5c4a937aaf
PR-URL: https://github.com/nodejs/node/pull/59805
Reviewed-By: Filip Skokan <panva.ip@gmail.com>
Reviewed-By: Richard Lau <richard.lau@ibm.com>
Reviewed-By: Ruben Bridgewater <ruben@bridgewater.de>
Reviewed-By: Colin Ihrig <cjihrig@gmail.com>
2025-10-04 18:48:35 +02:00

853 lines
28 KiB
C++

#include "async_wrap-inl.h"
#include "base_object-inl.h"
#include "debug_utils-inl.h"
#include "env-inl.h"
#include "memory_tracker-inl.h"
#include "node.h"
#include "node_dotenv.h"
#include "node_errors.h"
#include "node_external_reference.h"
#include "node_internals.h"
#include "node_process-inl.h"
#include "path.h"
#include "util-inl.h"
#include "uv.h"
#include "v8-fast-api-calls.h"
#include "v8.h"
#include <vector>
#if HAVE_INSPECTOR
#include "inspector_io.h"
#endif
#include <climits> // PATH_MAX
#include <cstdio>
#if defined(_MSC_VER)
#include <direct.h>
#include <io.h>
#include <process.h>
#define umask _umask
typedef int mode_t;
#else
#include <pthread.h>
#include <sys/resource.h> // getrlimit, setrlimit
#include <termios.h> // tcgetattr, tcsetattr
#include <unistd.h>
#endif
namespace node {
using v8::Array;
using v8::ArrayBuffer;
using v8::CFunction;
using v8::Context;
using v8::Float64Array;
using v8::Function;
using v8::FunctionCallbackInfo;
using v8::HeapStatistics;
using v8::Integer;
using v8::Isolate;
using v8::Local;
using v8::LocalVector;
using v8::Maybe;
using v8::NewStringType;
using v8::Number;
using v8::Object;
using v8::ObjectTemplate;
using v8::String;
using v8::Uint32;
using v8::Value;
namespace per_process {
Mutex umask_mutex;
} // namespace per_process
// Microseconds in a second, as a float, used in CPUUsage() below
#define MICROS_PER_SEC 1e6
// used in Hrtime() and Uptime() below
#define NANOS_PER_SEC 1000000000
static void Abort(const FunctionCallbackInfo<Value>& args) {
ABORT();
}
// For internal testing only, not exposed to userland.
static void CauseSegfault(const FunctionCallbackInfo<Value>& args) {
// This should crash hard all platforms.
void* volatile* d = static_cast<void* volatile*>(nullptr);
*d = nullptr;
}
static void Chdir(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CHECK(env->owns_process_state());
CHECK_EQ(args.Length(), 1);
CHECK(args[0]->IsString());
Utf8Value path(env->isolate(), args[0]);
THROW_IF_INSUFFICIENT_PERMISSIONS(
env, permission::PermissionScope::kFileSystemRead, path.ToStringView());
int err = uv_chdir(*path);
if (err) {
// Also include the original working directory, since that will usually
// be helpful information when debugging a `chdir()` failure.
char buf[PATH_MAX_BYTES];
size_t cwd_len = sizeof(buf);
uv_cwd(buf, &cwd_len);
return env->ThrowUVException(err, "chdir", nullptr, buf, *path);
}
}
inline Local<ArrayBuffer> get_fields_array_buffer(
const FunctionCallbackInfo<Value>& args,
size_t index,
size_t array_length) {
CHECK(args[index]->IsFloat64Array());
Local<Float64Array> arr = args[index].As<Float64Array>();
CHECK_EQ(arr->Length(), array_length);
return arr->Buffer();
}
// CPUUsage use libuv's uv_getrusage() this-process resource usage accessor,
// to access ru_utime (user CPU time used) and ru_stime (system CPU time used),
// which are uv_timeval_t structs (long tv_sec, long tv_usec).
// Returns those values as Float64 microseconds in the elements of the array
// passed to the function.
static void CPUUsage(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
uv_rusage_t rusage;
// Call libuv to get the values we'll return.
int err = uv_getrusage(&rusage);
if (err)
return env->ThrowUVException(err, "uv_getrusage");
// Get the double array pointer from the Float64Array argument.
Local<ArrayBuffer> ab = get_fields_array_buffer(args, 0, 2);
double* fields = static_cast<double*>(ab->Data());
// Set the Float64Array elements to be user / system values in microseconds.
fields[0] = MICROS_PER_SEC * rusage.ru_utime.tv_sec + rusage.ru_utime.tv_usec;
fields[1] = MICROS_PER_SEC * rusage.ru_stime.tv_sec + rusage.ru_stime.tv_usec;
}
// ThreadCPUUsage use libuv's uv_getrusage_thread() this-thread resource usage
// accessor, to access ru_utime (user CPU time used) and ru_stime
// (system CPU time used), which are uv_timeval_t structs
// (long tv_sec, long tv_usec).
// Returns those values as Float64 microseconds in the elements of the array
// passed to the function.
static void ThreadCPUUsage(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
uv_rusage_t rusage;
// Call libuv to get the values we'll return.
int err = uv_getrusage_thread(&rusage);
if (err) return env->ThrowUVException(err, "uv_getrusage_thread");
// Get the double array pointer from the Float64Array argument.
Local<ArrayBuffer> ab = get_fields_array_buffer(args, 0, 2);
double* fields = static_cast<double*>(ab->Data());
// Set the Float64Array elements to be user / system values in microseconds.
fields[0] = MICROS_PER_SEC * rusage.ru_utime.tv_sec + rusage.ru_utime.tv_usec;
fields[1] = MICROS_PER_SEC * rusage.ru_stime.tv_sec + rusage.ru_stime.tv_usec;
}
static void Cwd(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CHECK(env->has_run_bootstrapping_code());
char buf[PATH_MAX_BYTES];
size_t cwd_len = sizeof(buf);
int err = uv_cwd(buf, &cwd_len);
if (err) {
return env->ThrowUVException(err, "uv_cwd");
}
Local<String> cwd;
if (String::NewFromUtf8(env->isolate(), buf, NewStringType::kNormal, cwd_len)
.ToLocal(&cwd)) {
args.GetReturnValue().Set(cwd);
}
}
static void Kill(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Local<Context> context = env->context();
if (args.Length() < 2) {
THROW_ERR_MISSING_ARGS(env, "Bad argument.");
}
int pid;
if (!args[0]->Int32Value(context).To(&pid)) return;
int sig;
if (!args[1]->Int32Value(context).To(&sig)) return;
uv_pid_t own_pid = uv_os_getpid();
if (sig > 0 &&
(pid == 0 || pid == -1 || pid == own_pid || pid == -own_pid) &&
!HasSignalJSHandler(sig)) {
// This is most likely going to terminate this process.
// It's not an exact method but it might be close enough.
RunAtExit(env);
}
int err = uv_kill(pid, sig);
args.GetReturnValue().Set(err);
}
static void Rss(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
size_t rss;
int err = uv_resident_set_memory(&rss);
if (err)
return env->ThrowUVException(err, "uv_resident_set_memory");
args.GetReturnValue().Set(static_cast<double>(rss));
}
static void MemoryUsage(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
// V8 memory usage
HeapStatistics v8_heap_stats;
isolate->GetHeapStatistics(&v8_heap_stats);
NodeArrayBufferAllocator* array_buffer_allocator =
env->isolate_data()->node_allocator();
// Get the double array pointer from the Float64Array argument.
Local<ArrayBuffer> ab = get_fields_array_buffer(args, 0, 5);
double* fields = static_cast<double*>(ab->Data());
size_t rss;
int err = uv_resident_set_memory(&rss);
if (err)
return env->ThrowUVException(err, "uv_resident_set_memory");
fields[0] = static_cast<double>(rss);
fields[1] = static_cast<double>(v8_heap_stats.total_heap_size());
fields[2] = static_cast<double>(v8_heap_stats.used_heap_size());
fields[3] = static_cast<double>(v8_heap_stats.external_memory());
fields[4] =
array_buffer_allocator == nullptr
? 0
: static_cast<double>(array_buffer_allocator->total_mem_usage());
}
static void GetConstrainedMemory(const FunctionCallbackInfo<Value>& args) {
uint64_t value = uv_get_constrained_memory();
args.GetReturnValue().Set(static_cast<double>(value));
}
static void GetAvailableMemory(const FunctionCallbackInfo<Value>& args) {
uint64_t value = uv_get_available_memory();
args.GetReturnValue().Set(static_cast<double>(value));
}
void RawDebug(const FunctionCallbackInfo<Value>& args) {
CHECK(args.Length() == 1 && args[0]->IsString() &&
"must be called with a single string");
Utf8Value message(args.GetIsolate(), args[0]);
FPrintF(stderr, "%s\n", message);
fflush(stderr);
}
static void Umask(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CHECK(env->has_run_bootstrapping_code());
CHECK_EQ(args.Length(), 1);
CHECK(args[0]->IsUndefined() || args[0]->IsUint32());
Mutex::ScopedLock scoped_lock(per_process::umask_mutex);
uint32_t old;
if (args[0]->IsUndefined()) {
old = umask(0);
umask(static_cast<mode_t>(old));
} else {
int oct = args[0].As<Uint32>()->Value();
old = umask(static_cast<mode_t>(oct));
}
args.GetReturnValue().Set(old);
}
static void Uptime(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
uv_update_time(env->event_loop());
double uptime =
static_cast<double>(uv_hrtime() - per_process::node_start_time);
Local<Number> result = Number::New(env->isolate(), uptime / NANOS_PER_SEC);
args.GetReturnValue().Set(result);
}
static void GetActiveRequests(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
LocalVector<Value> request_v(env->isolate());
for (ReqWrapBase* req_wrap : *env->req_wrap_queue()) {
AsyncWrap* w = req_wrap->GetAsyncWrap();
if (w->persistent().IsEmpty())
continue;
request_v.emplace_back(w->GetOwner());
}
args.GetReturnValue().Set(
Array::New(env->isolate(), request_v.data(), request_v.size()));
}
// Non-static, friend of HandleWrap. Could have been a HandleWrap method but
// implemented here for consistency with GetActiveRequests().
void GetActiveHandles(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
LocalVector<Value> handle_v(env->isolate());
for (auto w : *env->handle_wrap_queue()) {
if (!HandleWrap::HasRef(w))
continue;
handle_v.emplace_back(w->GetOwner());
}
args.GetReturnValue().Set(
Array::New(env->isolate(), handle_v.data(), handle_v.size()));
}
static void GetActiveResourcesInfo(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
LocalVector<Value> resources_info(env->isolate());
// Active requests
for (ReqWrapBase* req_wrap : *env->req_wrap_queue()) {
AsyncWrap* w = req_wrap->GetAsyncWrap();
if (w->persistent().IsEmpty()) continue;
resources_info.emplace_back(
OneByteString(env->isolate(), w->MemoryInfoName()));
}
// Active handles
for (HandleWrap* w : *env->handle_wrap_queue()) {
if (w->persistent().IsEmpty() || !HandleWrap::HasRef(w)) continue;
resources_info.emplace_back(
OneByteString(env->isolate(), w->MemoryInfoName()));
}
// Active timeouts
Local<Value> timeout_str = FIXED_ONE_BYTE_STRING(env->isolate(), "Timeout");
for (int i = 0; i < env->timeout_info()[0]; ++i) {
resources_info.push_back(timeout_str);
}
// Active immediates
Local<Value> immediate_str =
FIXED_ONE_BYTE_STRING(env->isolate(), "Immediate");
for (uint32_t i = 0; i < env->immediate_info()->ref_count(); ++i) {
resources_info.push_back(immediate_str);
}
args.GetReturnValue().Set(
Array::New(env->isolate(), resources_info.data(), resources_info.size()));
}
static void ResourceUsage(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
uv_rusage_t rusage;
int err = uv_getrusage(&rusage);
if (err)
return env->ThrowUVException(err, "uv_getrusage");
Local<ArrayBuffer> ab = get_fields_array_buffer(args, 0, 16);
double* fields = static_cast<double*>(ab->Data());
fields[0] = MICROS_PER_SEC * rusage.ru_utime.tv_sec + rusage.ru_utime.tv_usec;
fields[1] = MICROS_PER_SEC * rusage.ru_stime.tv_sec + rusage.ru_stime.tv_usec;
fields[2] = static_cast<double>(rusage.ru_maxrss);
fields[3] = static_cast<double>(rusage.ru_ixrss);
fields[4] = static_cast<double>(rusage.ru_idrss);
fields[5] = static_cast<double>(rusage.ru_isrss);
fields[6] = static_cast<double>(rusage.ru_minflt);
fields[7] = static_cast<double>(rusage.ru_majflt);
fields[8] = static_cast<double>(rusage.ru_nswap);
fields[9] = static_cast<double>(rusage.ru_inblock);
fields[10] = static_cast<double>(rusage.ru_oublock);
fields[11] = static_cast<double>(rusage.ru_msgsnd);
fields[12] = static_cast<double>(rusage.ru_msgrcv);
fields[13] = static_cast<double>(rusage.ru_nsignals);
fields[14] = static_cast<double>(rusage.ru_nvcsw);
fields[15] = static_cast<double>(rusage.ru_nivcsw);
}
#ifdef __POSIX__
static void DebugProcess(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
if (args.Length() < 1) {
return THROW_ERR_MISSING_ARGS(env, "Invalid number of arguments.");
}
CHECK(args[0]->IsNumber());
pid_t pid = args[0].As<Integer>()->Value();
int r = kill(pid, SIGUSR1);
if (r != 0) {
return env->ThrowErrnoException(errno, "kill");
}
}
#endif // __POSIX__
#ifdef _WIN32
static int GetDebugSignalHandlerMappingName(DWORD pid,
wchar_t* buf,
size_t buf_len) {
return _snwprintf(buf, buf_len, L"node-debug-handler-%u", pid);
}
static void DebugProcess(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = args.GetIsolate();
if (args.Length() < 1) {
return THROW_ERR_MISSING_ARGS(env, "Invalid number of arguments.");
}
HANDLE process = nullptr;
HANDLE thread = nullptr;
HANDLE mapping = nullptr;
wchar_t mapping_name[32];
LPTHREAD_START_ROUTINE* handler = nullptr;
DWORD pid = 0;
auto cleanup = OnScopeLeave([&]() {
if (process != nullptr) CloseHandle(process);
if (thread != nullptr) CloseHandle(thread);
if (handler != nullptr) UnmapViewOfFile(handler);
if (mapping != nullptr) CloseHandle(mapping);
});
CHECK(args[0]->IsNumber());
pid = static_cast<DWORD>(args[0].As<Integer>()->Value());
process =
OpenProcess(PROCESS_CREATE_THREAD | PROCESS_QUERY_INFORMATION |
PROCESS_VM_OPERATION | PROCESS_VM_WRITE | PROCESS_VM_READ,
FALSE,
pid);
if (process == nullptr) {
isolate->ThrowException(
WinapiErrnoException(isolate, GetLastError(), "OpenProcess"));
return;
}
if (GetDebugSignalHandlerMappingName(
pid, mapping_name, arraysize(mapping_name)) < 0) {
env->ThrowErrnoException(errno, "sprintf");
return;
}
mapping = OpenFileMappingW(FILE_MAP_READ, FALSE, mapping_name);
if (mapping == nullptr) {
isolate->ThrowException(
WinapiErrnoException(isolate, GetLastError(), "OpenFileMappingW"));
return;
}
handler = reinterpret_cast<LPTHREAD_START_ROUTINE*>(
MapViewOfFile(mapping, FILE_MAP_READ, 0, 0, sizeof *handler));
if (handler == nullptr || *handler == nullptr) {
isolate->ThrowException(
WinapiErrnoException(isolate, GetLastError(), "MapViewOfFile"));
return;
}
thread =
CreateRemoteThread(process, nullptr, 0, *handler, nullptr, 0, nullptr);
if (thread == nullptr) {
isolate->ThrowException(
WinapiErrnoException(isolate, GetLastError(), "CreateRemoteThread"));
return;
}
// Wait for the thread to terminate
if (WaitForSingleObject(thread, INFINITE) != WAIT_OBJECT_0) {
isolate->ThrowException(
WinapiErrnoException(isolate, GetLastError(), "WaitForSingleObject"));
return;
}
}
#endif // _WIN32
static void DebugEnd(const FunctionCallbackInfo<Value>& args) {
#if HAVE_INSPECTOR
Environment* env = Environment::GetCurrent(args);
if (env->inspector_agent()->IsListening()) {
env->inspector_agent()->Stop();
}
#endif
}
static void ReallyExit(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
RunAtExit(env);
ExitCode code = ExitCode::kNoFailure;
Maybe<int32_t> code_int = args[0]->Int32Value(env->context());
if (!code_int.IsNothing()) {
code = static_cast<ExitCode>(code_int.FromJust());
}
env->Exit(code);
}
#if defined __POSIX__ && !defined(__PASE__)
inline int persist_standard_stream(int fd) {
int flags = fcntl(fd, F_GETFD, 0);
if (flags < 0) {
return flags;
}
flags &= ~FD_CLOEXEC;
return fcntl(fd, F_SETFD, flags);
}
static void Execve(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
Local<Context> context = env->context();
CHECK(args[0]->IsString());
CHECK(args[1]->IsArray());
CHECK(args[2]->IsArray());
Local<Array> argv_array = args[1].As<Array>();
Local<Array> envp_array = args[2].As<Array>();
// Copy arguments and environment
Utf8Value executable(isolate, args[0]);
THROW_IF_INSUFFICIENT_PERMISSIONS(env,
permission::PermissionScope::kChildProcess,
executable.ToStringView());
std::vector<std::string> argv_strings(argv_array->Length());
std::vector<std::string> envp_strings(envp_array->Length());
std::vector<char*> argv(argv_array->Length() + 1);
std::vector<char*> envp(envp_array->Length() + 1);
for (unsigned int i = 0; i < argv_array->Length(); i++) {
Local<Value> str;
if (!argv_array->Get(context, i).ToLocal(&str)) {
THROW_ERR_INVALID_ARG_VALUE(env, "Failed to deserialize argument.");
return;
}
argv_strings[i] = Utf8Value(isolate, str).ToString();
argv[i] = argv_strings[i].data();
}
argv[argv_array->Length()] = nullptr;
for (unsigned int i = 0; i < envp_array->Length(); i++) {
Local<Value> str;
if (!envp_array->Get(context, i).ToLocal(&str)) {
THROW_ERR_INVALID_ARG_VALUE(
env, "Failed to deserialize environment variable.");
return;
}
envp_strings[i] = Utf8Value(isolate, str).ToString();
envp[i] = envp_strings[i].data();
}
envp[envp_array->Length()] = nullptr;
// Set stdin, stdout and stderr to be non-close-on-exec
// so that the new process will inherit it.
if (persist_standard_stream(0) < 0 || persist_standard_stream(1) < 0 ||
persist_standard_stream(2) < 0) {
env->ThrowErrnoException(errno, "fcntl");
return;
}
// Perform the execve operation.
RunAtExit(env);
execve(*executable, argv.data(), envp.data());
// If it returns, it means that the execve operation failed.
// In that case we abort the process.
auto error_message = std::string("process.execve failed with error code ") +
errors::errno_string(errno);
// Abort the process
Local<v8::Value> exception =
ErrnoException(isolate, errno, "execve", *executable);
Local<v8::Message> message = v8::Exception::CreateMessage(isolate, exception);
std::string info = FormatErrorMessage(
isolate, context, error_message.c_str(), message, true);
FPrintF(stderr, "%s\n", info);
ABORT();
}
#endif
static void LoadEnvFile(const v8::FunctionCallbackInfo<v8::Value>& args) {
Environment* env = Environment::GetCurrent(args);
std::string path = ".env";
if (args.Length() == 1) {
BufferValue path_value(args.GetIsolate(), args[0]);
ToNamespacedPath(env, &path_value);
path = path_value.ToString();
}
THROW_IF_INSUFFICIENT_PERMISSIONS(
env, permission::PermissionScope::kFileSystemRead, path);
Dotenv dotenv{};
switch (dotenv.ParsePath(path)) {
case dotenv.ParseResult::Valid: {
USE(dotenv.SetEnvironment(env));
break;
}
case dotenv.ParseResult::InvalidContent: {
THROW_ERR_INVALID_ARG_TYPE(
env, "Contents of '%s' should be a valid string.", path);
break;
}
case dotenv.ParseResult::FileError: {
env->ThrowUVException(UV_ENOENT, "open", nullptr, path.c_str());
break;
}
default:
UNREACHABLE();
}
}
namespace process {
BindingData::BindingData(Realm* realm,
v8::Local<v8::Object> object,
InternalFieldInfo* info)
: SnapshotableObject(realm, object, type_int),
hrtime_buffer_(realm->isolate(),
kHrTimeBufferLength,
MAYBE_FIELD_PTR(info, hrtime_buffer)) {
Isolate* isolate = realm->isolate();
Local<Context> context = realm->context();
if (info == nullptr) {
object
->Set(context,
FIXED_ONE_BYTE_STRING(isolate, "hrtimeBuffer"),
hrtime_buffer_.GetJSArray())
.ToChecked();
} else {
hrtime_buffer_.Deserialize(realm->context());
}
// The hrtime buffer is referenced from the binding data js object.
// Make the native handle weak to avoid keeping the realm alive.
hrtime_buffer_.MakeWeak();
}
CFunction BindingData::fast_hrtime_(CFunction::Make(FastHrtime));
CFunction BindingData::fast_hrtime_bigint_(CFunction::Make(FastHrtimeBigInt));
void BindingData::AddMethods(Isolate* isolate, Local<ObjectTemplate> target) {
SetFastMethodNoSideEffect(
isolate, target, "hrtime", SlowHrtime, &fast_hrtime_);
SetFastMethodNoSideEffect(
isolate, target, "hrtimeBigInt", SlowHrtimeBigInt, &fast_hrtime_bigint_);
}
void BindingData::RegisterExternalReferences(
ExternalReferenceRegistry* registry) {
registry->Register(SlowHrtime);
registry->Register(SlowHrtimeBigInt);
registry->Register(fast_hrtime_);
registry->Register(fast_hrtime_bigint_);
}
BindingData* BindingData::FromV8Value(Local<Value> value) {
Local<Object> v8_object = value.As<Object>();
return static_cast<BindingData*>(
v8_object->GetAlignedPointerFromInternalField(BaseObject::kSlot));
}
void BindingData::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("hrtime_buffer", hrtime_buffer_);
}
// This is the legacy version of hrtime before BigInt was introduced in
// JavaScript.
// The value returned by uv_hrtime() is a 64-bit int representing nanoseconds,
// so this function instead fills in an Uint32Array with 3 entries,
// to avoid any integer overflow possibility.
// The first two entries contain the second part of the value
// broken into the upper/lower 32 bits to be converted back in JS,
// because there is no Uint64Array in JS.
// The third entry contains the remaining nanosecond part of the value.
void BindingData::HrtimeImpl(BindingData* receiver) {
uint64_t t = uv_hrtime();
receiver->hrtime_buffer_[0] = (t / NANOS_PER_SEC) >> 32;
receiver->hrtime_buffer_[1] = (t / NANOS_PER_SEC) & 0xffffffff;
receiver->hrtime_buffer_[2] = t % NANOS_PER_SEC;
}
void BindingData::HrtimeBigIntImpl(BindingData* receiver) {
uint64_t t = uv_hrtime();
// The buffer is a Uint32Array, so we need to reinterpret it as a
// Uint64Array to write the value. The buffer is valid at this scope so we
// can safely cast away the constness.
uint64_t* fields = reinterpret_cast<uint64_t*>(
const_cast<uint32_t*>(receiver->hrtime_buffer_.GetNativeBuffer()));
fields[0] = t;
}
void BindingData::SlowHrtimeBigInt(const FunctionCallbackInfo<Value>& args) {
HrtimeBigIntImpl(FromJSObject<BindingData>(args.This()));
}
void BindingData::SlowHrtime(const FunctionCallbackInfo<Value>& args) {
HrtimeImpl(FromJSObject<BindingData>(args.This()));
}
bool BindingData::PrepareForSerialization(Local<Context> context,
v8::SnapshotCreator* creator) {
DCHECK_NULL(internal_field_info_);
internal_field_info_ = InternalFieldInfoBase::New<InternalFieldInfo>(type());
internal_field_info_->hrtime_buffer =
hrtime_buffer_.Serialize(context, creator);
// Return true because we need to maintain the reference to the binding from
// JS land.
return true;
}
InternalFieldInfoBase* BindingData::Serialize(int index) {
DCHECK_IS_SNAPSHOT_SLOT(index);
InternalFieldInfo* info = internal_field_info_;
internal_field_info_ = nullptr;
return info;
}
void BindingData::Deserialize(Local<Context> context,
Local<Object> holder,
int index,
InternalFieldInfoBase* info) {
DCHECK_IS_SNAPSHOT_SLOT(index);
v8::HandleScope scope(Isolate::GetCurrent());
Realm* realm = Realm::GetCurrent(context);
// Recreate the buffer in the constructor.
InternalFieldInfo* casted_info = static_cast<InternalFieldInfo*>(info);
BindingData* binding =
realm->AddBindingData<BindingData>(holder, casted_info);
CHECK_NOT_NULL(binding);
}
static void SetEmitWarningSync(const FunctionCallbackInfo<Value>& args) {
CHECK(args[0]->IsFunction());
Environment* env = Environment::GetCurrent(args);
env->set_process_emit_warning_sync(args[0].As<Function>());
}
static void CreatePerIsolateProperties(IsolateData* isolate_data,
Local<ObjectTemplate> target) {
Isolate* isolate = isolate_data->isolate();
BindingData::AddMethods(isolate, target);
// define various internal methods
SetMethod(isolate, target, "_debugProcess", DebugProcess);
SetMethod(isolate, target, "abort", Abort);
SetMethod(isolate, target, "causeSegfault", CauseSegfault);
SetMethod(isolate, target, "chdir", Chdir);
SetMethod(isolate, target, "umask", Umask);
SetMethod(isolate, target, "memoryUsage", MemoryUsage);
SetMethod(isolate, target, "constrainedMemory", GetConstrainedMemory);
SetMethod(isolate, target, "availableMemory", GetAvailableMemory);
SetMethod(isolate, target, "rss", Rss);
SetMethod(isolate, target, "cpuUsage", CPUUsage);
SetMethod(isolate, target, "threadCpuUsage", ThreadCPUUsage);
SetMethod(isolate, target, "resourceUsage", ResourceUsage);
SetMethod(isolate, target, "_debugEnd", DebugEnd);
SetMethod(isolate, target, "_getActiveRequests", GetActiveRequests);
SetMethod(isolate, target, "_getActiveHandles", GetActiveHandles);
SetMethod(isolate, target, "getActiveResourcesInfo", GetActiveResourcesInfo);
SetMethod(isolate, target, "_kill", Kill);
SetMethod(isolate, target, "_rawDebug", RawDebug);
SetMethodNoSideEffect(isolate, target, "cwd", Cwd);
SetMethod(isolate, target, "dlopen", binding::DLOpen);
SetMethod(isolate, target, "reallyExit", ReallyExit);
#if defined __POSIX__ && !defined(__PASE__)
SetMethod(isolate, target, "execve", Execve);
#endif
SetMethodNoSideEffect(isolate, target, "uptime", Uptime);
SetMethod(isolate, target, "patchProcessObject", PatchProcessObject);
SetMethod(isolate, target, "loadEnvFile", LoadEnvFile);
SetMethod(isolate, target, "setEmitWarningSync", SetEmitWarningSync);
}
static void CreatePerContextProperties(Local<Object> target,
Local<Value> unused,
Local<Context> context,
void* priv) {
Realm* realm = Realm::GetCurrent(context);
realm->AddBindingData<BindingData>(target);
}
void RegisterExternalReferences(ExternalReferenceRegistry* registry) {
BindingData::RegisterExternalReferences(registry);
registry->Register(DebugProcess);
registry->Register(DebugEnd);
registry->Register(Abort);
registry->Register(CauseSegfault);
registry->Register(Chdir);
registry->Register(Umask);
registry->Register(RawDebug);
registry->Register(MemoryUsage);
registry->Register(GetConstrainedMemory);
registry->Register(GetAvailableMemory);
registry->Register(Rss);
registry->Register(CPUUsage);
registry->Register(ThreadCPUUsage);
registry->Register(ResourceUsage);
registry->Register(GetActiveRequests);
registry->Register(GetActiveHandles);
registry->Register(GetActiveResourcesInfo);
registry->Register(Kill);
registry->Register(Cwd);
registry->Register(binding::DLOpen);
registry->Register(ReallyExit);
#if defined __POSIX__ && !defined(__PASE__)
registry->Register(Execve);
#endif
registry->Register(Uptime);
registry->Register(PatchProcessObject);
registry->Register(LoadEnvFile);
registry->Register(SetEmitWarningSync);
}
} // namespace process
} // namespace node
NODE_BINDING_CONTEXT_AWARE_INTERNAL(process_methods,
node::process::CreatePerContextProperties)
NODE_BINDING_PER_ISOLATE_INIT(process_methods,
node::process::CreatePerIsolateProperties)
NODE_BINDING_EXTERNAL_REFERENCE(process_methods,
node::process::RegisterExternalReferences)