mirror of
https://github.com/zebrajr/node.git
synced 2026-01-15 12:15:26 +00:00
Refs: https://chromium-review.googlesource.com/c/v8/v8/+/5300826 PR-URL: https://github.com/nodejs/node/pull/54077 Reviewed-By: Jiawen Geng <technicalcute@gmail.com> Reviewed-By: Richard Lau <rlau@redhat.com> Reviewed-By: Joyee Cheung <joyeec9h3@gmail.com> Reviewed-By: Marco Ippolito <marcoippolito54@gmail.com>
660 lines
21 KiB
C++
660 lines
21 KiB
C++
#include "node_platform.h"
|
|
#include "node_internals.h"
|
|
|
|
#include "env-inl.h"
|
|
#include "debug_utils-inl.h"
|
|
#include <algorithm> // find_if(), find(), move()
|
|
#include <cmath> // llround()
|
|
#include <memory> // unique_ptr(), shared_ptr(), make_shared()
|
|
|
|
namespace node {
|
|
|
|
using v8::Isolate;
|
|
using v8::Object;
|
|
using v8::Platform;
|
|
using v8::Task;
|
|
|
|
namespace {
|
|
|
|
struct PlatformWorkerData {
|
|
TaskQueue<Task>* task_queue;
|
|
Mutex* platform_workers_mutex;
|
|
ConditionVariable* platform_workers_ready;
|
|
int* pending_platform_workers;
|
|
int id;
|
|
};
|
|
|
|
static void PlatformWorkerThread(void* data) {
|
|
std::unique_ptr<PlatformWorkerData>
|
|
worker_data(static_cast<PlatformWorkerData*>(data));
|
|
|
|
TaskQueue<Task>* pending_worker_tasks = worker_data->task_queue;
|
|
TRACE_EVENT_METADATA1("__metadata", "thread_name", "name",
|
|
"PlatformWorkerThread");
|
|
|
|
// Notify the main thread that the platform worker is ready.
|
|
{
|
|
Mutex::ScopedLock lock(*worker_data->platform_workers_mutex);
|
|
(*worker_data->pending_platform_workers)--;
|
|
worker_data->platform_workers_ready->Signal(lock);
|
|
}
|
|
|
|
while (std::unique_ptr<Task> task = pending_worker_tasks->BlockingPop()) {
|
|
task->Run();
|
|
pending_worker_tasks->NotifyOfCompletion();
|
|
}
|
|
}
|
|
|
|
static int GetActualThreadPoolSize(int thread_pool_size) {
|
|
if (thread_pool_size < 1) {
|
|
thread_pool_size = uv_available_parallelism() - 1;
|
|
}
|
|
return std::max(thread_pool_size, 1);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
class WorkerThreadsTaskRunner::DelayedTaskScheduler {
|
|
public:
|
|
explicit DelayedTaskScheduler(TaskQueue<Task>* tasks)
|
|
: pending_worker_tasks_(tasks) {}
|
|
|
|
std::unique_ptr<uv_thread_t> Start() {
|
|
auto start_thread = [](void* data) {
|
|
static_cast<DelayedTaskScheduler*>(data)->Run();
|
|
};
|
|
std::unique_ptr<uv_thread_t> t { new uv_thread_t() };
|
|
uv_sem_init(&ready_, 0);
|
|
CHECK_EQ(0, uv_thread_create(t.get(), start_thread, this));
|
|
uv_sem_wait(&ready_);
|
|
uv_sem_destroy(&ready_);
|
|
return t;
|
|
}
|
|
|
|
void PostDelayedTask(std::unique_ptr<Task> task, double delay_in_seconds) {
|
|
tasks_.Push(std::make_unique<ScheduleTask>(this, std::move(task),
|
|
delay_in_seconds));
|
|
uv_async_send(&flush_tasks_);
|
|
}
|
|
|
|
void Stop() {
|
|
tasks_.Push(std::make_unique<StopTask>(this));
|
|
uv_async_send(&flush_tasks_);
|
|
}
|
|
|
|
private:
|
|
void Run() {
|
|
TRACE_EVENT_METADATA1("__metadata", "thread_name", "name",
|
|
"WorkerThreadsTaskRunner::DelayedTaskScheduler");
|
|
loop_.data = this;
|
|
CHECK_EQ(0, uv_loop_init(&loop_));
|
|
flush_tasks_.data = this;
|
|
CHECK_EQ(0, uv_async_init(&loop_, &flush_tasks_, FlushTasks));
|
|
uv_sem_post(&ready_);
|
|
|
|
uv_run(&loop_, UV_RUN_DEFAULT);
|
|
CheckedUvLoopClose(&loop_);
|
|
}
|
|
|
|
static void FlushTasks(uv_async_t* flush_tasks) {
|
|
DelayedTaskScheduler* scheduler =
|
|
ContainerOf(&DelayedTaskScheduler::loop_, flush_tasks->loop);
|
|
while (std::unique_ptr<Task> task = scheduler->tasks_.Pop())
|
|
task->Run();
|
|
}
|
|
|
|
class StopTask : public Task {
|
|
public:
|
|
explicit StopTask(DelayedTaskScheduler* scheduler): scheduler_(scheduler) {}
|
|
|
|
void Run() override {
|
|
std::vector<uv_timer_t*> timers;
|
|
for (uv_timer_t* timer : scheduler_->timers_)
|
|
timers.push_back(timer);
|
|
for (uv_timer_t* timer : timers)
|
|
scheduler_->TakeTimerTask(timer);
|
|
uv_close(reinterpret_cast<uv_handle_t*>(&scheduler_->flush_tasks_),
|
|
[](uv_handle_t* handle) {});
|
|
}
|
|
|
|
private:
|
|
DelayedTaskScheduler* scheduler_;
|
|
};
|
|
|
|
class ScheduleTask : public Task {
|
|
public:
|
|
ScheduleTask(DelayedTaskScheduler* scheduler,
|
|
std::unique_ptr<Task> task,
|
|
double delay_in_seconds)
|
|
: scheduler_(scheduler),
|
|
task_(std::move(task)),
|
|
delay_in_seconds_(delay_in_seconds) {}
|
|
|
|
void Run() override {
|
|
uint64_t delay_millis = llround(delay_in_seconds_ * 1000);
|
|
std::unique_ptr<uv_timer_t> timer(new uv_timer_t());
|
|
CHECK_EQ(0, uv_timer_init(&scheduler_->loop_, timer.get()));
|
|
timer->data = task_.release();
|
|
CHECK_EQ(0, uv_timer_start(timer.get(), RunTask, delay_millis, 0));
|
|
scheduler_->timers_.insert(timer.release());
|
|
}
|
|
|
|
private:
|
|
DelayedTaskScheduler* scheduler_;
|
|
std::unique_ptr<Task> task_;
|
|
double delay_in_seconds_;
|
|
};
|
|
|
|
static void RunTask(uv_timer_t* timer) {
|
|
DelayedTaskScheduler* scheduler =
|
|
ContainerOf(&DelayedTaskScheduler::loop_, timer->loop);
|
|
scheduler->pending_worker_tasks_->Push(scheduler->TakeTimerTask(timer));
|
|
}
|
|
|
|
std::unique_ptr<Task> TakeTimerTask(uv_timer_t* timer) {
|
|
std::unique_ptr<Task> task(static_cast<Task*>(timer->data));
|
|
uv_timer_stop(timer);
|
|
uv_close(reinterpret_cast<uv_handle_t*>(timer), [](uv_handle_t* handle) {
|
|
delete reinterpret_cast<uv_timer_t*>(handle);
|
|
});
|
|
timers_.erase(timer);
|
|
return task;
|
|
}
|
|
|
|
uv_sem_t ready_;
|
|
TaskQueue<Task>* pending_worker_tasks_;
|
|
|
|
TaskQueue<Task> tasks_;
|
|
uv_loop_t loop_;
|
|
uv_async_t flush_tasks_;
|
|
std::unordered_set<uv_timer_t*> timers_;
|
|
};
|
|
|
|
WorkerThreadsTaskRunner::WorkerThreadsTaskRunner(int thread_pool_size) {
|
|
Mutex platform_workers_mutex;
|
|
ConditionVariable platform_workers_ready;
|
|
|
|
Mutex::ScopedLock lock(platform_workers_mutex);
|
|
int pending_platform_workers = thread_pool_size;
|
|
|
|
delayed_task_scheduler_ = std::make_unique<DelayedTaskScheduler>(
|
|
&pending_worker_tasks_);
|
|
threads_.push_back(delayed_task_scheduler_->Start());
|
|
|
|
for (int i = 0; i < thread_pool_size; i++) {
|
|
PlatformWorkerData* worker_data = new PlatformWorkerData{
|
|
&pending_worker_tasks_, &platform_workers_mutex,
|
|
&platform_workers_ready, &pending_platform_workers, i
|
|
};
|
|
std::unique_ptr<uv_thread_t> t { new uv_thread_t() };
|
|
if (uv_thread_create(t.get(), PlatformWorkerThread,
|
|
worker_data) != 0) {
|
|
break;
|
|
}
|
|
threads_.push_back(std::move(t));
|
|
}
|
|
|
|
// Wait for platform workers to initialize before continuing with the
|
|
// bootstrap.
|
|
while (pending_platform_workers > 0) {
|
|
platform_workers_ready.Wait(lock);
|
|
}
|
|
}
|
|
|
|
void WorkerThreadsTaskRunner::PostTask(std::unique_ptr<Task> task) {
|
|
pending_worker_tasks_.Push(std::move(task));
|
|
}
|
|
|
|
void WorkerThreadsTaskRunner::PostDelayedTask(std::unique_ptr<Task> task,
|
|
double delay_in_seconds) {
|
|
delayed_task_scheduler_->PostDelayedTask(std::move(task), delay_in_seconds);
|
|
}
|
|
|
|
void WorkerThreadsTaskRunner::BlockingDrain() {
|
|
pending_worker_tasks_.BlockingDrain();
|
|
}
|
|
|
|
void WorkerThreadsTaskRunner::Shutdown() {
|
|
pending_worker_tasks_.Stop();
|
|
delayed_task_scheduler_->Stop();
|
|
for (size_t i = 0; i < threads_.size(); i++) {
|
|
CHECK_EQ(0, uv_thread_join(threads_[i].get()));
|
|
}
|
|
}
|
|
|
|
int WorkerThreadsTaskRunner::NumberOfWorkerThreads() const {
|
|
return threads_.size();
|
|
}
|
|
|
|
PerIsolatePlatformData::PerIsolatePlatformData(
|
|
Isolate* isolate, uv_loop_t* loop)
|
|
: isolate_(isolate), loop_(loop) {
|
|
flush_tasks_ = new uv_async_t();
|
|
CHECK_EQ(0, uv_async_init(loop, flush_tasks_, FlushTasks));
|
|
flush_tasks_->data = static_cast<void*>(this);
|
|
uv_unref(reinterpret_cast<uv_handle_t*>(flush_tasks_));
|
|
}
|
|
|
|
std::shared_ptr<v8::TaskRunner>
|
|
PerIsolatePlatformData::GetForegroundTaskRunner() {
|
|
return shared_from_this();
|
|
}
|
|
|
|
void PerIsolatePlatformData::FlushTasks(uv_async_t* handle) {
|
|
auto platform_data = static_cast<PerIsolatePlatformData*>(handle->data);
|
|
platform_data->FlushForegroundTasksInternal();
|
|
}
|
|
|
|
void PerIsolatePlatformData::PostIdleTaskImpl(
|
|
std::unique_ptr<v8::IdleTask> task, const v8::SourceLocation& location) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void PerIsolatePlatformData::PostTaskImpl(std::unique_ptr<Task> task,
|
|
const v8::SourceLocation& location) {
|
|
if (flush_tasks_ == nullptr) {
|
|
// V8 may post tasks during Isolate disposal. In that case, the only
|
|
// sensible path forward is to discard the task.
|
|
return;
|
|
}
|
|
foreground_tasks_.Push(std::move(task));
|
|
uv_async_send(flush_tasks_);
|
|
}
|
|
|
|
void PerIsolatePlatformData::PostDelayedTaskImpl(
|
|
std::unique_ptr<Task> task,
|
|
double delay_in_seconds,
|
|
const v8::SourceLocation& location) {
|
|
if (flush_tasks_ == nullptr) {
|
|
// V8 may post tasks during Isolate disposal. In that case, the only
|
|
// sensible path forward is to discard the task.
|
|
return;
|
|
}
|
|
std::unique_ptr<DelayedTask> delayed(new DelayedTask());
|
|
delayed->task = std::move(task);
|
|
delayed->platform_data = shared_from_this();
|
|
delayed->timeout = delay_in_seconds;
|
|
foreground_delayed_tasks_.Push(std::move(delayed));
|
|
uv_async_send(flush_tasks_);
|
|
}
|
|
|
|
void PerIsolatePlatformData::PostNonNestableTaskImpl(
|
|
std::unique_ptr<Task> task, const v8::SourceLocation& location) {
|
|
PostTaskImpl(std::move(task), location);
|
|
}
|
|
|
|
void PerIsolatePlatformData::PostNonNestableDelayedTaskImpl(
|
|
std::unique_ptr<Task> task,
|
|
double delay_in_seconds,
|
|
const v8::SourceLocation& location) {
|
|
PostDelayedTaskImpl(std::move(task), delay_in_seconds, location);
|
|
}
|
|
|
|
PerIsolatePlatformData::~PerIsolatePlatformData() {
|
|
CHECK(!flush_tasks_);
|
|
}
|
|
|
|
void PerIsolatePlatformData::AddShutdownCallback(void (*callback)(void*),
|
|
void* data) {
|
|
shutdown_callbacks_.emplace_back(ShutdownCallback { callback, data });
|
|
}
|
|
|
|
void PerIsolatePlatformData::Shutdown() {
|
|
if (flush_tasks_ == nullptr)
|
|
return;
|
|
|
|
// While there should be no V8 tasks in the queues at this point, it is
|
|
// possible that Node.js-internal tasks from e.g. the inspector are still
|
|
// lying around. We clear these queues and ignore the return value,
|
|
// effectively deleting the tasks instead of running them.
|
|
foreground_delayed_tasks_.PopAll();
|
|
foreground_tasks_.PopAll();
|
|
scheduled_delayed_tasks_.clear();
|
|
|
|
// Both destroying the scheduled_delayed_tasks_ lists and closing
|
|
// flush_tasks_ handle add tasks to the event loop. We keep a count of all
|
|
// non-closed handles, and when that reaches zero, we inform any shutdown
|
|
// callbacks that the platform is done as far as this Isolate is concerned.
|
|
self_reference_ = shared_from_this();
|
|
uv_close(reinterpret_cast<uv_handle_t*>(flush_tasks_),
|
|
[](uv_handle_t* handle) {
|
|
std::unique_ptr<uv_async_t> flush_tasks {
|
|
reinterpret_cast<uv_async_t*>(handle) };
|
|
PerIsolatePlatformData* platform_data =
|
|
static_cast<PerIsolatePlatformData*>(flush_tasks->data);
|
|
platform_data->DecreaseHandleCount();
|
|
platform_data->self_reference_.reset();
|
|
});
|
|
flush_tasks_ = nullptr;
|
|
}
|
|
|
|
void PerIsolatePlatformData::DecreaseHandleCount() {
|
|
CHECK_GE(uv_handle_count_, 1);
|
|
if (--uv_handle_count_ == 0) {
|
|
for (const auto& callback : shutdown_callbacks_)
|
|
callback.cb(callback.data);
|
|
}
|
|
}
|
|
|
|
NodePlatform::NodePlatform(int thread_pool_size,
|
|
v8::TracingController* tracing_controller,
|
|
v8::PageAllocator* page_allocator) {
|
|
if (tracing_controller != nullptr) {
|
|
tracing_controller_ = tracing_controller;
|
|
} else {
|
|
tracing_controller_ = new v8::TracingController();
|
|
}
|
|
|
|
// V8 will default to its built in allocator if none is provided.
|
|
page_allocator_ = page_allocator;
|
|
|
|
// TODO(addaleax): It's a bit icky that we use global state here, but we can't
|
|
// really do anything about it unless V8 starts exposing a way to access the
|
|
// current v8::Platform instance.
|
|
SetTracingController(tracing_controller_);
|
|
DCHECK_EQ(GetTracingController(), tracing_controller_);
|
|
|
|
thread_pool_size = GetActualThreadPoolSize(thread_pool_size);
|
|
worker_thread_task_runner_ =
|
|
std::make_shared<WorkerThreadsTaskRunner>(thread_pool_size);
|
|
}
|
|
|
|
NodePlatform::~NodePlatform() {
|
|
Shutdown();
|
|
}
|
|
|
|
void NodePlatform::RegisterIsolate(Isolate* isolate, uv_loop_t* loop) {
|
|
Mutex::ScopedLock lock(per_isolate_mutex_);
|
|
auto delegate = std::make_shared<PerIsolatePlatformData>(isolate, loop);
|
|
IsolatePlatformDelegate* ptr = delegate.get();
|
|
auto insertion = per_isolate_.emplace(
|
|
isolate,
|
|
std::make_pair(ptr, std::move(delegate)));
|
|
CHECK(insertion.second);
|
|
}
|
|
|
|
void NodePlatform::RegisterIsolate(Isolate* isolate,
|
|
IsolatePlatformDelegate* delegate) {
|
|
Mutex::ScopedLock lock(per_isolate_mutex_);
|
|
auto insertion = per_isolate_.emplace(
|
|
isolate,
|
|
std::make_pair(delegate, std::shared_ptr<PerIsolatePlatformData>{}));
|
|
CHECK(insertion.second);
|
|
}
|
|
|
|
void NodePlatform::UnregisterIsolate(Isolate* isolate) {
|
|
Mutex::ScopedLock lock(per_isolate_mutex_);
|
|
auto existing_it = per_isolate_.find(isolate);
|
|
CHECK_NE(existing_it, per_isolate_.end());
|
|
auto& existing = existing_it->second;
|
|
if (existing.second) {
|
|
existing.second->Shutdown();
|
|
}
|
|
per_isolate_.erase(existing_it);
|
|
}
|
|
|
|
void NodePlatform::AddIsolateFinishedCallback(Isolate* isolate,
|
|
void (*cb)(void*), void* data) {
|
|
Mutex::ScopedLock lock(per_isolate_mutex_);
|
|
auto it = per_isolate_.find(isolate);
|
|
if (it == per_isolate_.end()) {
|
|
cb(data);
|
|
return;
|
|
}
|
|
CHECK(it->second.second);
|
|
it->second.second->AddShutdownCallback(cb, data);
|
|
}
|
|
|
|
void NodePlatform::Shutdown() {
|
|
if (has_shut_down_) return;
|
|
has_shut_down_ = true;
|
|
worker_thread_task_runner_->Shutdown();
|
|
|
|
{
|
|
Mutex::ScopedLock lock(per_isolate_mutex_);
|
|
per_isolate_.clear();
|
|
}
|
|
}
|
|
|
|
int NodePlatform::NumberOfWorkerThreads() {
|
|
return worker_thread_task_runner_->NumberOfWorkerThreads();
|
|
}
|
|
|
|
void PerIsolatePlatformData::RunForegroundTask(std::unique_ptr<Task> task) {
|
|
if (isolate_->IsExecutionTerminating()) return;
|
|
DebugSealHandleScope scope(isolate_);
|
|
Environment* env = Environment::GetCurrent(isolate_);
|
|
if (env != nullptr) {
|
|
v8::HandleScope scope(isolate_);
|
|
InternalCallbackScope cb_scope(env, Object::New(isolate_), { 0, 0 },
|
|
InternalCallbackScope::kNoFlags);
|
|
task->Run();
|
|
} else {
|
|
// When the Environment was freed, the tasks of the Isolate should also be
|
|
// canceled by `NodePlatform::UnregisterIsolate`. However, if the embedder
|
|
// request to run the foreground task after the Environment was freed, run
|
|
// the task without InternalCallbackScope.
|
|
|
|
// The task is moved out of InternalCallbackScope if env is not available.
|
|
// This is a required else block, and should not be removed.
|
|
// See comment: https://github.com/nodejs/node/pull/34688#pullrequestreview-463867489
|
|
task->Run();
|
|
}
|
|
}
|
|
|
|
void PerIsolatePlatformData::DeleteFromScheduledTasks(DelayedTask* task) {
|
|
auto it = std::find_if(scheduled_delayed_tasks_.begin(),
|
|
scheduled_delayed_tasks_.end(),
|
|
[task](const DelayedTaskPointer& delayed) -> bool {
|
|
return delayed.get() == task;
|
|
});
|
|
CHECK_NE(it, scheduled_delayed_tasks_.end());
|
|
scheduled_delayed_tasks_.erase(it);
|
|
}
|
|
|
|
void PerIsolatePlatformData::RunForegroundTask(uv_timer_t* handle) {
|
|
DelayedTask* delayed = ContainerOf(&DelayedTask::timer, handle);
|
|
delayed->platform_data->RunForegroundTask(std::move(delayed->task));
|
|
delayed->platform_data->DeleteFromScheduledTasks(delayed);
|
|
}
|
|
|
|
void NodePlatform::DrainTasks(Isolate* isolate) {
|
|
std::shared_ptr<PerIsolatePlatformData> per_isolate = ForNodeIsolate(isolate);
|
|
if (!per_isolate) return;
|
|
|
|
do {
|
|
// Worker tasks aren't associated with an Isolate.
|
|
worker_thread_task_runner_->BlockingDrain();
|
|
} while (per_isolate->FlushForegroundTasksInternal());
|
|
}
|
|
|
|
bool PerIsolatePlatformData::FlushForegroundTasksInternal() {
|
|
bool did_work = false;
|
|
|
|
while (std::unique_ptr<DelayedTask> delayed =
|
|
foreground_delayed_tasks_.Pop()) {
|
|
did_work = true;
|
|
uint64_t delay_millis = llround(delayed->timeout * 1000);
|
|
|
|
delayed->timer.data = static_cast<void*>(delayed.get());
|
|
uv_timer_init(loop_, &delayed->timer);
|
|
// Timers may not guarantee queue ordering of events with the same delay if
|
|
// the delay is non-zero. This should not be a problem in practice.
|
|
uv_timer_start(&delayed->timer, RunForegroundTask, delay_millis, 0);
|
|
uv_unref(reinterpret_cast<uv_handle_t*>(&delayed->timer));
|
|
uv_handle_count_++;
|
|
|
|
scheduled_delayed_tasks_.emplace_back(delayed.release(),
|
|
[](DelayedTask* delayed) {
|
|
uv_close(reinterpret_cast<uv_handle_t*>(&delayed->timer),
|
|
[](uv_handle_t* handle) {
|
|
std::unique_ptr<DelayedTask> task {
|
|
static_cast<DelayedTask*>(handle->data) };
|
|
task->platform_data->DecreaseHandleCount();
|
|
});
|
|
});
|
|
}
|
|
// Move all foreground tasks into a separate queue and flush that queue.
|
|
// This way tasks that are posted while flushing the queue will be run on the
|
|
// next call of FlushForegroundTasksInternal.
|
|
std::queue<std::unique_ptr<Task>> tasks = foreground_tasks_.PopAll();
|
|
while (!tasks.empty()) {
|
|
std::unique_ptr<Task> task = std::move(tasks.front());
|
|
tasks.pop();
|
|
did_work = true;
|
|
RunForegroundTask(std::move(task));
|
|
}
|
|
return did_work;
|
|
}
|
|
|
|
void NodePlatform::PostTaskOnWorkerThreadImpl(
|
|
v8::TaskPriority priority,
|
|
std::unique_ptr<v8::Task> task,
|
|
const v8::SourceLocation& location) {
|
|
worker_thread_task_runner_->PostTask(std::move(task));
|
|
}
|
|
|
|
void NodePlatform::PostDelayedTaskOnWorkerThreadImpl(
|
|
v8::TaskPriority priority,
|
|
std::unique_ptr<v8::Task> task,
|
|
double delay_in_seconds,
|
|
const v8::SourceLocation& location) {
|
|
worker_thread_task_runner_->PostDelayedTask(std::move(task),
|
|
delay_in_seconds);
|
|
}
|
|
|
|
IsolatePlatformDelegate* NodePlatform::ForIsolate(Isolate* isolate) {
|
|
Mutex::ScopedLock lock(per_isolate_mutex_);
|
|
auto data = per_isolate_[isolate];
|
|
CHECK_NOT_NULL(data.first);
|
|
return data.first;
|
|
}
|
|
|
|
std::shared_ptr<PerIsolatePlatformData>
|
|
NodePlatform::ForNodeIsolate(Isolate* isolate) {
|
|
Mutex::ScopedLock lock(per_isolate_mutex_);
|
|
auto data = per_isolate_[isolate];
|
|
CHECK_NOT_NULL(data.first);
|
|
return data.second;
|
|
}
|
|
|
|
bool NodePlatform::FlushForegroundTasks(Isolate* isolate) {
|
|
std::shared_ptr<PerIsolatePlatformData> per_isolate = ForNodeIsolate(isolate);
|
|
if (!per_isolate) return false;
|
|
return per_isolate->FlushForegroundTasksInternal();
|
|
}
|
|
|
|
std::unique_ptr<v8::JobHandle> NodePlatform::CreateJobImpl(
|
|
v8::TaskPriority priority,
|
|
std::unique_ptr<v8::JobTask> job_task,
|
|
const v8::SourceLocation& location) {
|
|
return v8::platform::NewDefaultJobHandle(
|
|
this, priority, std::move(job_task), NumberOfWorkerThreads());
|
|
}
|
|
|
|
bool NodePlatform::IdleTasksEnabled(Isolate* isolate) {
|
|
return ForIsolate(isolate)->IdleTasksEnabled();
|
|
}
|
|
|
|
std::shared_ptr<v8::TaskRunner>
|
|
NodePlatform::GetForegroundTaskRunner(Isolate* isolate) {
|
|
return ForIsolate(isolate)->GetForegroundTaskRunner();
|
|
}
|
|
|
|
double NodePlatform::MonotonicallyIncreasingTime() {
|
|
// Convert nanos to seconds.
|
|
return uv_hrtime() / 1e9;
|
|
}
|
|
|
|
double NodePlatform::CurrentClockTimeMillis() {
|
|
return SystemClockTimeMillis();
|
|
}
|
|
|
|
v8::TracingController* NodePlatform::GetTracingController() {
|
|
CHECK_NOT_NULL(tracing_controller_);
|
|
return tracing_controller_;
|
|
}
|
|
|
|
Platform::StackTracePrinter NodePlatform::GetStackTracePrinter() {
|
|
return []() {
|
|
fprintf(stderr, "\n");
|
|
DumpNativeBacktrace(stderr);
|
|
fflush(stderr);
|
|
};
|
|
}
|
|
|
|
v8::PageAllocator* NodePlatform::GetPageAllocator() {
|
|
return page_allocator_;
|
|
}
|
|
|
|
template <class T>
|
|
TaskQueue<T>::TaskQueue()
|
|
: lock_(), tasks_available_(), tasks_drained_(),
|
|
outstanding_tasks_(0), stopped_(false), task_queue_() { }
|
|
|
|
template <class T>
|
|
void TaskQueue<T>::Push(std::unique_ptr<T> task) {
|
|
Mutex::ScopedLock scoped_lock(lock_);
|
|
outstanding_tasks_++;
|
|
task_queue_.push(std::move(task));
|
|
tasks_available_.Signal(scoped_lock);
|
|
}
|
|
|
|
template <class T>
|
|
std::unique_ptr<T> TaskQueue<T>::Pop() {
|
|
Mutex::ScopedLock scoped_lock(lock_);
|
|
if (task_queue_.empty()) {
|
|
return std::unique_ptr<T>(nullptr);
|
|
}
|
|
std::unique_ptr<T> result = std::move(task_queue_.front());
|
|
task_queue_.pop();
|
|
return result;
|
|
}
|
|
|
|
template <class T>
|
|
std::unique_ptr<T> TaskQueue<T>::BlockingPop() {
|
|
Mutex::ScopedLock scoped_lock(lock_);
|
|
while (task_queue_.empty() && !stopped_) {
|
|
tasks_available_.Wait(scoped_lock);
|
|
}
|
|
if (stopped_) {
|
|
return std::unique_ptr<T>(nullptr);
|
|
}
|
|
std::unique_ptr<T> result = std::move(task_queue_.front());
|
|
task_queue_.pop();
|
|
return result;
|
|
}
|
|
|
|
template <class T>
|
|
void TaskQueue<T>::NotifyOfCompletion() {
|
|
Mutex::ScopedLock scoped_lock(lock_);
|
|
if (--outstanding_tasks_ == 0) {
|
|
tasks_drained_.Broadcast(scoped_lock);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void TaskQueue<T>::BlockingDrain() {
|
|
Mutex::ScopedLock scoped_lock(lock_);
|
|
while (outstanding_tasks_ > 0) {
|
|
tasks_drained_.Wait(scoped_lock);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void TaskQueue<T>::Stop() {
|
|
Mutex::ScopedLock scoped_lock(lock_);
|
|
stopped_ = true;
|
|
tasks_available_.Broadcast(scoped_lock);
|
|
}
|
|
|
|
template <class T>
|
|
std::queue<std::unique_ptr<T>> TaskQueue<T>::PopAll() {
|
|
Mutex::ScopedLock scoped_lock(lock_);
|
|
std::queue<std::unique_ptr<T>> result;
|
|
result.swap(task_queue_);
|
|
return result;
|
|
}
|
|
|
|
} // namespace node
|