* FaceSwap 3 (#1515)
* Update extract pipeline
* Update requirements + setup for nvidia
* Remove allow-growth option
* tf.keras to keras updates
* lib.model.losses - Port + fix all loss functions for Keras3
* lib.model - port initializers, layers. normalization to Keras3
* lib.model.autoclip to Keras 3
* Update mixed precision layer storage
* model file to .keras format
* Restructure nn_blocks to initialize layers in __init__
* Tensorboard
- Trainer: Add Torch compatible Tensorboard callbacks
- GUI event reader remove TF dependency
* Loss logging
- Flush TB logs on save
- Replace TB live iterator for GUI
* Backup models on total loss drop rather than per side
* Update all models to Keras3 Compat
* Remove lib.model.session
* Update clip ViT to Keras 3
* plugins.extract.mask.unet-dfl - Fix for Keras3/Torch backend
* Port AdaBelief to Keras 3
* setup.py:
- Add --dev flag for dev tool install
* Fix Keras 3 syntax
* Fix LR Finder for Keras 3
* Fix mixed precision switching for Keras 3
* Add more optimizers + open up config setting
* train: Remove updating FS1 weights to FS2 models
* Alignments: Remove support for legacy .json files
* tools.model:
- Remove TF Saved Format saving
- Fix Backup/Restore + Nan-Scan
* Fix inference model creation for Keras 3
* Preview tool: Fix for Keras3
* setup.py: Configure keras backend
* train: Migration of FS2 models to FS3
* Training: Default coverage to 100%
* Remove DirectML backend
* Update setup for MacOS
* GUI: Force line reading to UTF-8
* Remove redundant Tensorflow references
* Remove redundant code
* Legacy model loading: Fix TFLamdaOp scalar ops and DepthwiseConv2D
* Add vertical offset option for training
* Github actions: Add more python versions
* Add python version to workflow names
* Github workflow: Exclude Python 3.12 for macOS
* Implement custom training loop
* Fs3 - Add RTX5xxx and ROCm 6.1-6.4 support (#1511)
* setup.py: Add Cuda/ROCm version select options
* bump minimum python version to 3.11
* Switch from setup.cgf to pyproject.toml
* Documentation: Update all docs to use automodapi
* Allow sysinfo to run with missing packages + correctly install tk under Linux
* Bugfix: dot naming convention in clip models
* lib.config: Centralise globally rather than passing as object
- Add torch DataParallel for multi-gpu training
- GUI: Group switches together when generating cli args
- CLI: Remove deprecated multi-character argparse args
- Refactor:
- Centralise tensorboard reading/writing + unit tests
- Create trainer plugin interfaces + add original + distributed
* Update installers
* Core Updates
- Remove lib.utils.keras_backend_quiet and replace with get_backend() where relevant
- Document lib.gpu_stats and lib.sys_info
- Remove call to GPUStats.is_plaidml from convert and replace with get_backend()
- lib.gui.menu - typofix
* Update Dependencies
Bump Tensorflow Version Check
* Port extraction to tf2
* Add custom import finder for loading Keras or tf.keras depending on backend
* Add `tensorflow` to KerasFinder search path
* Basic TF2 training running
* model.initializers - docstring fix
* Fix and pass tests for tf2
* Replace Keras backend tests with faceswap backend tests
* Initial optimizers update
* Monkey patch tf.keras optimizer
* Remove custom Adam Optimizers and Memory Saving Gradients
* Remove multi-gpu option. Add Distribution to cli
* plugins.train.model._base: Add Mirror, Central and Default distribution strategies
* Update tensorboard kwargs for tf2
* Penalized Loss - Fix for TF2 and AMD
* Fix syntax for tf2.1
* requirements typo fix
* Explicit None for clipnorm if using a distribution strategy
* Fix penalized loss for distribution strategies
* Update Dlight
* typo fix
* Pin to TF2.2
* setup.py - Install tensorflow from pip if not available in Conda
* Add reduction options and set default for mirrored distribution strategy
* Explicitly use default strategy rather than nullcontext
* lib.model.backup_restore documentation
* Remove mirrored strategy reduction method and default based on OS
* Initial restructure - training
* Remove PingPong
Start model.base refactor
* Model saving and resuming enabled
* More tidying up of model.base
* Enable backup and snapshotting
* Re-enable state file
Remove loss names from state file
Fix print loss function
Set snapshot iterations correctly
* Revert original model to Keras Model structure rather than custom layer
Output full model and sub model summary
Change NNBlocks to callables rather than custom keras layers
* Apply custom Conv2D layer
* Finalize NNBlock restructure
Update Dfaker blocks
* Fix reloading model under a different distribution strategy
* Pass command line arguments through to trainer
* Remove training_opts from model and reference params directly
* Tidy up model __init__
* Re-enable tensorboard logging
Suppress "Model Not Compiled" warning
* Fix timelapse
* lib.model.nnblocks - Bugfix residual block
Port dfaker
bugfix original
* dfl-h128 ported
* DFL SAE ported
* IAE Ported
* dlight ported
* port lightweight
* realface ported
* unbalanced ported
* villain ported
* lib.cli.args - Update Batchsize + move allow_growth to config
* Remove output shape definition
Get image sizes per side rather than globally
* Strip mask input from encoder
* Fix learn mask and output learned mask to preview
* Trigger Allow Growth prior to setting strategy
* Fix GUI Graphing
* GUI - Display batchsize correctly + fix training graphs
* Fix penalized loss
* Enable mixed precision training
* Update analysis displayed batch to match input
* Penalized Loss - Multi-GPU Fix
* Fix all losses for TF2
* Fix Reflect Padding
* Allow different input size for each side of the model
* Fix conv-aware initialization on reload
* Switch allow_growth order
* Move mixed_precision to cli
* Remove distrubution strategies
* Compile penalized loss sub-function into LossContainer
* Bump default save interval to 250
Generate preview on first iteration but don't save
Fix iterations to start at 1 instead of 0
Remove training deprecation warnings
Bump some scripts.train loglevels
* Add ability to refresh preview on demand on pop-up window
* Enable refresh of training preview from GUI
* Fix Convert
Debug logging in Initializers
* Fix Preview Tool
* Update Legacy TF1 weights to TF2
Catch stats error on loading stats with missing logs
* lib.gui.popup_configure - Make more responsive + document
* Multiple Outputs supported in trainer
Original Model - Mask output bugfix
* Make universal inference model for convert
Remove scaling from penalized mask loss (now handled at input to y_true)
* Fix inference model to work properly with all models
* Fix multi-scale output for convert
* Fix clipnorm issue with distribution strategies
Edit error message on OOM
* Update plaidml losses
* Add missing file
* Disable gmsd loss for plaidnl
* PlaidML - Basic training working
* clipnorm rewriting for mixed-precision
* Inference model creation bugfixes
* Remove debug code
* Bugfix: Default clipnorm to 1.0
* Remove all mask inputs from training code
* Remove mask inputs from convert
* GUI - Analysis Tab - Docstrings
* Fix rate in totals row
* lib.gui - Only update display pages if they have focus
* Save the model on first iteration
* plaidml - Fix SSIM loss with penalized loss
* tools.alignments - Remove manual and fix jobs
* GUI - Remove case formatting on help text
* gui MultiSelect custom widget - Set default values on init
* vgg_face2 - Move to plugins.extract.recognition and use plugins._base base class
cli - Add global GPU Exclude Option
tools.sort - Use global GPU Exlude option for backend
lib.model.session - Exclude all GPUs when running in CPU mode
lib.cli.launcher - Set backend to CPU mode when all GPUs excluded
* Cascade excluded devices to GPU Stats
* Explicit GPU selection for Train and Convert
* Reduce Tensorflow Min GPU Multiprocessor Count to 4
* remove compat.v1 code from extract
* Force TF to skip mixed precision compatibility check if GPUs have been filtered
* Add notes to config for non-working AMD losses
* Rasie error if forcing extract to CPU mode
* Fix loading of legace dfl-sae weights + dfl-sae typo fix
* Remove unused requirements
Update sphinx requirements
Fix broken rst file locations
* docs: lib.gui.display
* clipnorm amd condition check
* documentation - gui.display_analysis
* Documentation - gui.popup_configure
* Documentation - lib.logger
* Documentation - lib.model.initializers
* Documentation - lib.model.layers
* Documentation - lib.model.losses
* Documentation - lib.model.nn_blocks
* Documetation - lib.model.normalization
* Documentation - lib.model.session
* Documentation - lib.plaidml_stats
* Documentation: lib.training_data
* Documentation: lib.utils
* Documentation: plugins.train.model._base
* GUI Stats: prevent stats from using GPU
* Documentation - Original Model
* Documentation: plugins.model.trainer._base
* linting
* unit tests: initializers + losses
* unit tests: nn_blocks
* bugfix - Exclude gpu devices in train, not include
* Enable Exclude-Gpus in Extract
* Enable exclude gpus in tools
* Disallow multiple plugin types in a single model folder
* Automatically add exclude_gpus argument in for cpu backends
* Cpu backend fixes
* Relax optimizer test threshold
* Default Train settings - Set mask to Extended
* Update Extractor cli help text
Update to Python 3.8
* Fix FAN to run on CPU
* lib.plaidml_tools - typofix
* Linux installer - check for curl
* linux installer - typo fix
* 1st Round update for Python 3.7, TF1.15, Keras2.3
Move Tensorflow logging verbosity prior to first tensorflow import
Keras Optimizers and nn_block update
lib.logger - Change tf deprecation messages from WARNING to DEBUG
Raise Tensorflow Max version check to 1.15
Update requirements and conda check for python 3.7+
Update install scripts, travis and documentation to Python 3.7
* Revert Keras to 2.2.4