Files
LivePortrait/src/config/inference_config.py
Jianzhu Guo 73ddb69d38 feat: pose editing for source portraits (#212)
* feat: edit-pose

* feat: edit-pose

* feat: edit pose (#207)

* feat: edit-pose

* chore: i2v cropper

* chore: i2v cropper

* chore: update gradio

* chore: update gradio

* chore: i2v cropper

* chore: update

* chore: update

* doc: update readme

* doc: update readme

---------

Co-authored-by: zhangdingyun <zhangdingyun@kuaishou.com>
Co-authored-by: ZhizhouZhong <1819489045@qq.com>
2024-07-24 22:22:43 +08:00

56 lines
2.9 KiB
Python

# coding: utf-8
"""
config dataclass used for inference
"""
import cv2
from numpy import ndarray
from dataclasses import dataclass, field
from typing import Literal, Tuple
from .base_config import PrintableConfig, make_abs_path
@dataclass(repr=False) # use repr from PrintableConfig
class InferenceConfig(PrintableConfig):
# MODEL CONFIG, NOT EXPORTED PARAMS
models_config: str = make_abs_path('./models.yaml') # portrait animation config
checkpoint_F: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth') # path to checkpoint of F
checkpoint_M: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/motion_extractor.pth') # path to checkpoint pf M
checkpoint_G: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/spade_generator.pth') # path to checkpoint of G
checkpoint_W: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/warping_module.pth') # path to checkpoint of W
checkpoint_S: str = make_abs_path('../../pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip
# EXPORTED PARAMS
flag_use_half_precision: bool = True
flag_crop_driving_video: bool = False
device_id: int = 0
flag_normalize_lip: bool = True
flag_source_video_eye_retargeting: bool = False
flag_video_editing_head_rotation: bool = False
flag_eye_retargeting: bool = False
flag_lip_retargeting: bool = False
flag_stitching: bool = True
flag_relative_motion: bool = True
flag_pasteback: bool = True
flag_do_crop: bool = True
flag_do_rot: bool = True
flag_force_cpu: bool = False
flag_do_torch_compile: bool = False
# NOT EXPORTED PARAMS
lip_normalize_threshold: float = 0.03 # threshold for flag_normalize_lip
source_video_eye_retargeting_threshold: float = 0.18 # threshold for eyes retargeting if the input is a source video
driving_smooth_observation_variance: float = 3e-7 # smooth strength scalar for the animated video when the input is a source video, the larger the number, the smoother the animated video; too much smoothness would result in loss of motion accuracy
anchor_frame: int = 0 # TO IMPLEMENT
input_shape: Tuple[int, int] = (256, 256) # input shape
output_format: Literal['mp4', 'gif'] = 'mp4' # output video format
crf: int = 15 # crf for output video
output_fps: int = 25 # default output fps
mask_crop: ndarray = field(default_factory=lambda: cv2.imread(make_abs_path('../utils/resources/mask_template.png'), cv2.IMREAD_COLOR))
size_gif: int = 256 # default gif size, TO IMPLEMENT
source_max_dim: int = 1280 # the max dim of height and width of source image or video
source_division: int = 2 # make sure the height and width of source image or video can be divided by this number